A361887
a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
from math import comb
def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
A361890
a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/ S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7, k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
from math import comb
def A361890(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
A126087
Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
1, 1, 3, 5, 15, 29, 87, 181, 543, 1181, 3543, 7941, 23823, 54573, 163719, 381333, 1143999, 2699837, 8099511, 19319845, 57959535, 139480397, 418441191, 1014536117, 3043608351, 7426790749, 22280372247, 54669443141, 164008329423
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // G. C. Greubel, Nov 07 2022
-
c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Mar 04 2007
-
CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126087(n): return sum(2^(n-k)*A120730(n,k) for k in range(n+1))
[A126087(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
A151254
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
Original entry on oeis.org
1, 4, 20, 96, 480, 2368, 11840, 58880, 294400, 1468416, 7342080, 36667392, 183336960, 916144128, 4580720640, 22896574464, 114482872320, 572320645120, 2861603225600, 14306741583872, 71533707919360, 357650927714304, 1788254638571520, 8941026626502656, 44705133132513280, 223522175800311808
Offset: 0
-
[n le 3 select Factorial(n+2)/6 else (5*n*Self(n-1) + 16*(n-3)*Self(n-2) - 80*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
-
aux[i_, j_, k_, n_]:= Which[Min[i, j, k, n]<0 || Max[i, j, k]>n, 0, n==0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1+i, -1+j, -1+k, -1+n] + aux[-1+i, -1+j, k, -1+n] + aux[-1+i, j, -1+k, -1+n] + aux[-1+i, j, k, -1 + n] + aux[1+i, j, k, -1+n]]; Table[Sum[aux[i,j,k,n], {i,0,n}, {j,0,n}, {k,0,n}], {n, 0, 30}]
a[n_]:= a[n]= If[n<3, (n+3)!/3!, (5*(n+1)*a[n-1] +16*(n-2)*a[n-2] -80*(n-2)*a[n- 3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
-
def a(n): # a = A151254
if (n==0): return 1
elif (n%2==1): return 5*a(n-1) - 4^((n-1)/2)*catalan_number((n-1)/2)
else: return 5*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
A357824
Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, 2, ...
2, 3, 5, 9, 17, 33, 65, 129, ...
3, 6, 14, 36, 98, 276, 794, 2316, ...
3, 10, 42, 190, 882, 4150, 19722, 94510, ...
4, 20, 132, 980, 7812, 65300, 562692, 4939220, ...
4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)
A121724
Generalized central binomial coefficients for k=2.
Original entry on oeis.org
1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289, 71445, 185193, 925965, 2467137, 12335685, 33563481, 167817405, 464221105, 2321105525, 6507351113, 32536755565, 92236247841, 461181239205, 1319640776249, 6598203881245, 19031570387857, 95157851939285
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-16*x^2)+2*x-1)/(2*x*(1-5*x)) )); // G. C. Greubel, Nov 07 2022
-
CoefficientList[Series[(Sqrt[1-16*x^2]+2*x-1)/(2*x*(1-5*x)), {x,0,40}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A121724(n): return sum(4^(n-k)*A120730(n,k) for k in range(n+1))
[A121724(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
A128386
Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
-
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}];
Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
-
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1))
[A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
A128387
Expansion of c(5x^2)/(1-x*c(5x^2)), where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 6, 11, 66, 146, 876, 2131, 12786, 32966, 197796, 530526, 3183156, 8786436, 52718616, 148733571, 892401426, 2561439806, 15368638836, 44731364266, 268388185596, 790211926076, 4741271556456, 14095578557486
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-20*x^2)+2*x-1)/(2*x*(1-6*x)) )); // G. C. Greubel, Nov 07 2022
-
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
A126387[n_]:= Sum[5^k*A120730[n, n-k], {k,0,n}];
Table[A126387[n], {n, 0, 50}] (* G. C. Greubel, Nov 07 2022 *)
-
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126387(n): return sum(5^k*A120730(n,n-k) for k in range(n+1))
[A126387(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
A156195
a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.
Original entry on oeis.org
1, 5, 30, 175, 1050, 6250, 37500, 224375, 1346250, 8068750, 48412500, 290343750, 1742062500, 10450312500, 62701875000, 376177734375, 2257066406250, 13541839843750, 81251039062500, 487496738281250, 2924980429687500, 17549718554687500, 105298311328125000
Offset: 0
-
[n le 3 select Factorial(n+3)/24 else (6*n*Self(n-1) + 20*(n-3)*Self(n-2) - 120*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
-
A156195 := proc(n)
option remember;
local nh;
if n= 0 then
1;
elif type(n,'even') then
6*procname(n-1);
else
nh := floor(n/2) ;
6*procname(n-1)-5^nh*A000108(nh) ;
end if;
end proc: # R. J. Mathar, Jul 21 2016
-
CoefficientList[Series[(Sqrt[1-20x^2]+10x-1)/(10x(1-6x)),{x,0,30}],x] (* Harvey P. Dale, Oct 21 2016 *)
-
def a(n): # a = A156195
if (n==0): return 1
elif (n%2==1): return 6*a(n-1) - 5^((n-1)/2)*catalan_number((n-1)/2)
else: return 6*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
A382433
a(n) = S(6,n), where S(r,n) = Sum_{k=0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 65, 794, 19722, 562692, 15105729, 553537490, 18107304842, 716747344436, 27247858130506, 1137502720488532, 47573235297987700, 2085487143991309320, 92820152112054862785, 4246321874111740074210, 197525644801830489637170, 9363425291004877645851300
Offset: 0
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
a:= n-> add(b(n, n-2*j)^6, j=0..n/2):
seq(a(n), n=0..18); # Alois P. Heinz, Mar 25 2025
-
Table[Sum[Binomial[n,k] * (Binomial[n,k] - Binomial[n,k-1])^5, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 25 2025 *)
-
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^5);
-
from math import comb
def A382433(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**6 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
Comments