cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A361887 a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0

Views

Author

Peter Bala, Mar 28 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(5,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 5-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361888 ( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361890 ( S(7,n) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
Column k=5 of A357824.

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
  • Python
    from math import comb
    def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^5.
a(n) = Sum_{j=0..n} A120730(n,j)^5.
a(n) = A357824(n,5). (End)
a(n) ~ 2^(5*n + 19/2) / (125 * Pi^(5/2) * n^(9/2)). - Vaclav Kotesovec, Aug 27 2023

A361890 a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
Offset: 0

Views

Author

Peter Bala, Mar 30 2023

Keywords

Comments

For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(7,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 7-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023

Crossrefs

Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A382394 ( S(3,2*n-1) ), A183069 ( S(3,2*n-1)/ S(1,2*n-1) ), A361887 ( S(5,n) ), A361888 ( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/ S(1,2*n-1) ).
Column k=7 of A357824.

Programs

  • Maple
    seq(add( ( binomial(n,k) - binomial(n,k-1) )^7, k = 0..floor(n/2)), n = 0..20);
  • Mathematica
    Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
  • Python
    from math import comb
    def A361890(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^7.
a(n) = Sum_{j=0..n} A120730(n,j)^7.
a(n) = A357824(n,7). (End)
a(n) ~ 3 * 2^(7*n + 27/2) / (2401 * Pi^(7/2) * n^(13/2)). - Vaclav Kotesovec, Aug 27 2023

A126087 Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 3, 5, 15, 29, 87, 181, 543, 1181, 3543, 7941, 23823, 54573, 163719, 381333, 1143999, 2699837, 8099511, 19319845, 57959535, 139480397, 418441191, 1014536117, 3043608351, 7426790749, 22280372247, 54669443141, 164008329423
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Series reversion of x*(1+x)/(1+2*x+3*x^2) [offset 0]. - Paul Barry, Mar 13 2007
Hankel transform is 2^C(n+1,2). - Philippe Deléham, Mar 16 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // G. C. Greubel, Nov 07 2022
    
  • Maple
    c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Mar 04 2007
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126087(n): return sum(2^(n-k)*A120730(n,k) for k in range(n+1))
    [A126087(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (1-sqrt(1-8*x^2))/(x*(4*x-1+sqrt(1-8*x^2))). - Emeric Deutsch, Mar 04 2007
a(n) = Sum_{k=0..n} 2^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n-1) = Sum_{k=1..n} (1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,floor((n+k)/2))/n. - Vladimir Kruchinin, Feb 18 2011
a(2*n) = A089022(n). - Philippe Deléham, Nov 02 2011
D-finite with recurrence: (n+1)*a(n) = 3*(n+1)*a(n-1) - 8*(2-n)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Emeric Deutsch, Mar 04 2007

A151254 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Original entry on oeis.org

1, 4, 20, 96, 480, 2368, 11840, 58880, 294400, 1468416, 7342080, 36667392, 183336960, 916144128, 4580720640, 22896574464, 114482872320, 572320645120, 2861603225600, 14306741583872, 71533707919360, 357650927714304, 1788254638571520, 8941026626502656, 44705133132513280, 223522175800311808
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

Hankel transform is 4^binomial(n+1,2). - Philippe Deléham, Feb 01 2009

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+2)/6 else (5*n*Self(n-1) + 16*(n-3)*Self(n-2) - 80*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Mathematica
    aux[i_, j_, k_, n_]:= Which[Min[i, j, k, n]<0 || Max[i, j, k]>n, 0, n==0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1+i, -1+j, -1+k, -1+n] + aux[-1+i, -1+j, k, -1+n] + aux[-1+i, j, -1+k, -1+n] + aux[-1+i, j, k, -1 + n] + aux[1+i, j, k, -1+n]]; Table[Sum[aux[i,j,k,n], {i,0,n}, {j,0,n}, {k,0,n}], {n, 0, 30}]
    a[n_]:= a[n]= If[n<3, (n+3)!/3!, (5*(n+1)*a[n-1] +16*(n-2)*a[n-2] -80*(n-2)*a[n- 3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A151254
        if (n==0): return 1
        elif (n%2==1): return 5*a(n-1) - 4^((n-1)/2)*catalan_number((n-1)/2)
        else: return 5*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*4^k. - Philippe Deléham, Feb 01 2009
From Philippe Deléham, Feb 02 2009: (Start)
a(2n+2) = 5*a(2n+1), a(2n+1) = 5*a(2n) - 4^n*A000108(n) = 5*a(2n) - A151403(n).
G.f.: (sqrt(1-16*x^2) + 8*x - 1)/(8*x*(1-5*x)). (End)
a(n) = (5*(n+1)*a(n-1) + 16*(n-2)*a(n-2) - 80*(n-2)*a(n-3))/(n+1). - G. C. Greubel, Nov 09 2022

A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,     1,       1,        1,         1, ...
  1,  1,   1,    1,     1,       1,        1,         1, ...
  2,  2,   2,    2,     2,       2,        2,         2, ...
  2,  3,   5,    9,    17,      33,       65,       129, ...
  3,  6,  14,   36,    98,     276,      794,      2316, ...
  3, 10,  42,  190,   882,    4150,    19722,     94510, ...
  4, 20, 132,  980,  7812,   65300,   562692,   4939220, ...
  4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
		

Crossrefs

Rows n=1-5 give: A000012, A007395, A000051, A001550, A074511.
Main diagonal gives A357825.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
    A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..floor(n/2)} A008315(n,j)^k.
A(n,k) = Sum_{j=0..n} A120730(n,j)^k for k>=1, A(n,0) = A008619(n).

A121724 Generalized central binomial coefficients for k=2.

Original entry on oeis.org

1, 1, 5, 9, 45, 97, 485, 1145, 5725, 14289, 71445, 185193, 925965, 2467137, 12335685, 33563481, 167817405, 464221105, 2321105525, 6507351113, 32536755565, 92236247841, 461181239205, 1319640776249, 6598203881245, 19031570387857, 95157851939285
Offset: 0

Views

Author

Paul Barry, Aug 17 2006, Feb 28 2007

Keywords

Comments

Hankel transform is 4^binomial(n+1,2) = A053763(n+1). Case k=2 of T(n,k) = (1/Pi)*2*k^2*(2*k)^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(1+k^2-2*k*x) dx. T(n,k) has Hankel transform (k^2)^binomial(n+1,2). k=1 corresponds to C(n,floor(n/2)).
Series reversion of x*(1+x)/(1+2*x+5*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-16*x^2)+2*x-1)/(2*x*(1-5*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    CoefficientList[Series[(Sqrt[1-16*x^2]+2*x-1)/(2*x*(1-5*x)), {x,0,40}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A121724(n): return sum(4^(n-k)*A120730(n,k) for k in range(n+1))
    [A121724(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-16*x^2) + 2*x - 1)/(2*x*(1-5*x)) = c(4*x^2)/(1-x*c(4*x^2)), c(x) the g.f. of A000108.
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n-2*k+j)*2^j*5^(k-j).
a(n) = (1/Pi)*8*4^n*Integral_{x=-1..1} x^n*sqrt(1-x^2)/(5-4*x) dx.
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*2^2k. - Philippe Deléham, Aug 18 2006
a(n) = Sum_{k=0..n} 4^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
Conjecture: (n+1)*a(n) = 5*(n+1)*a(n-1) + 16*(n-2)*a(n-2) - 80*(n-2)*a(n-3). - R. J. Mathar, Nov 26 2012
a(n) ~ (9+(-1)^n) * 2^(2*n+5/2) / (9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Vincenzo Librandi, Feb 15 2014

A128386 Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0

Views

Author

Paul Barry, Feb 28 2007

Keywords

Comments

Hankel transform is 3^C(n+1,2) = A047656(n+1).
Series reversion of x*(1+x)/(1+2*x+4*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
    A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}];
    Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1))
    [A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^(2*k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*3^k/(n-k+1);
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^k.
a(n) = Sum_{k=0..n} 3^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
D-finite with recurrence (n+1)*a(n) - 4*(n+1)*a(n-1) + 12*(2-n)*a(n-2) + 48*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011

A128387 Expansion of c(5x^2)/(1-x*c(5x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 6, 11, 66, 146, 876, 2131, 12786, 32966, 197796, 530526, 3183156, 8786436, 52718616, 148733571, 892401426, 2561439806, 15368638836, 44731364266, 268388185596, 790211926076, 4741271556456, 14095578557486
Offset: 0

Views

Author

Paul Barry, Feb 28 2007

Keywords

Comments

Hankel transform is 5^C(n+1,2).
Reversion of x*(1+x)/(1+2*x+6*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-20*x^2)+2*x-1)/(2*x*(1-6*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    A126387[n_]:= Sum[5^k*A120730[n, n-k], {k,0,n}];
    Table[A126387[n], {n, 0, 50}] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126387(n): return sum(5^k*A120730(n,n-k) for k in range(n+1))
    [A126387(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-20*x^2) + 2*x - 1)/(2*x*(1-6*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^j*6^(k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*5^k/(n-k+1).
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*5^k.
a(n) = Sum_{k=0..n} 5^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011

A156195 a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 5, 30, 175, 1050, 6250, 37500, 224375, 1346250, 8068750, 48412500, 290343750, 1742062500, 10450312500, 62701875000, 376177734375, 2257066406250, 13541839843750, 81251039062500, 487496738281250, 2924980429687500, 17549718554687500, 105298311328125000
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2009

Keywords

Comments

Hankel transform is 5^C(n+1,2). - Philippe Deléham, Feb 05 2009

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+3)/24 else (6*n*Self(n-1) + 20*(n-3)*Self(n-2) - 120*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    A156195 := proc(n)
        option remember;
        local nh;
        if n= 0 then
            1;
        elif  type(n,'even') then
            6*procname(n-1);
        else
            nh := floor(n/2) ;
            6*procname(n-1)-5^nh*A000108(nh) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    CoefficientList[Series[(Sqrt[1-20x^2]+10x-1)/(10x(1-6x)),{x,0,30}],x] (* Harvey P. Dale, Oct 21 2016 *)
  • SageMath
    def a(n): # a = A156195
        if (n==0): return 1
        elif (n%2==1): return 6*a(n-1) - 5^((n-1)/2)*catalan_number((n-1)/2)
        else: return 6*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*5^k.
G.f.: (sqrt(1-20*x^2) +10*x -1)/(10*x*(1-6*x)). - Philippe Deléham, Feb 05 2009
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016

Extensions

Corrected and extended by Harvey P. Dale, Oct 21 2016

A382433 a(n) = S(6,n), where S(r,n) = Sum_{k=0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.

Original entry on oeis.org

1, 1, 2, 65, 794, 19722, 562692, 15105729, 553537490, 18107304842, 716747344436, 27247858130506, 1137502720488532, 47573235297987700, 2085487143991309320, 92820152112054862785, 4246321874111740074210, 197525644801830489637170, 9363425291004877645851300
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Column k=6 of A357824.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> add(b(n, n-2*j)^6, j=0..n/2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Mar 25 2025
  • Mathematica
    Table[Sum[Binomial[n,k] * (Binomial[n,k] - Binomial[n,k-1])^5, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 25 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^5);
    
  • Python
    from math import comb
    def A382433(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**6 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k=0..floor(n/2)} A008315(n,k)^6.
a(n) = Sum_{k=0..n} A120730(n,k)^6.
a(n) = A357824(n,6).
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^5.
a(n) ~ 5 * 2^(6*n+4) / (3^(5/2) * Pi^(5/2) * n^(11/2)). - Vaclav Kotesovec, Mar 25 2025
Previous Showing 11-20 of 31 results. Next