cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A218869 Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number k (1 <= k <= n).

Original entry on oeis.org

2, 2, 0, 4, 2, 0, 6, 4, 2, 0, 12, 12, 4, 2, 0, 20, 20, 8, 4, 2, 0, 40, 52, 20, 8, 4, 2, 0, 74, 100, 36, 16, 8, 4, 2, 0, 148, 214, 76, 36, 16, 8, 4, 2, 0, 286, 414, 160, 68, 32, 16, 8, 4, 2, 0, 572, 876, 328, 140, 68, 32, 16, 8, 4, 2, 0, 1124, 1722, 640, 276, 132, 64, 32, 16, 8, 4, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2012

Keywords

Comments

S is aperiodic if it is not of the form S = T^m with m > 1.
Row sums are A027375. First column is A122536.
It appears that reversed rows converge to A155559. - Omar E. Pol, Nov 20 2012

Examples

			Triangle begins:
2,
2, 0,
4, 2, 0,
6, 4, 2, 0,
12, 12, 4, 2, 0,
20, 20, 8, 4, 2, 0,
40, 52, 20, 8, 4, 2, 0,
74, 100, 36, 16, 8, 4, 2, 0,
148, 214, 76, 36, 16, 8, 4, 2, 0,
286, 414, 160, 68, 32, 16, 8, 4, 2, 0,
572, 876, 328, 140, 68, 32, 16, 8, 4, 2, 0,
...
		

Crossrefs

A211029 Triangle read by rows in which row n lists the binary words of length n over the alphabet {1,2} with no initial repeats.

Original entry on oeis.org

1, 2, 12, 21, 121, 122, 211, 212, 1211, 1221, 1222, 2111, 2112, 2122, 12111, 12112, 12211, 12212, 12221, 12222, 21111, 21112, 21121, 21122, 21221, 21222, 121111, 121112, 121122, 122111, 122112, 122121, 122211, 122212, 122221, 122222, 211111, 211112
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2012

Keywords

Comments

As usual in the OEIS, binary alphabets are encoded with {1,2} over the alphabet {0,1} the entries contain nonzero "numbers" beginning with 0.

Examples

			The fourth row of triangle of binary sequences is
0100, 0110, 0111, 1000, 1001, 1011 (see section example of A122536) therefore the fourth row of this triangle is
1211, 1221, 1222, 2111, 2112, 2122.
The first six rows of triangle are:
1, 2;
12, 21;
121, 122, 211, 212;
1211, 1221, 1222, 2111, 2112, 2122;
12111, 12112, 12211, 12212, 12221, 12222, 21111, 21112, 21121, 21122, 21221, 21222;
121111, 121112, 121122, 122111, 122112, 122121, 122211, 122212, 122221, 122222, 211111, 211112, 211121, 211122, 211212, 211221, 211222, 212211, 212221, 212222;
		

Crossrefs

Row n has length A122536(n).

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=0, [[]], map(x->
          [[x[], 1], [x[], 2]][], s(n-1))) end:
    T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i;
          for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i]
          then return false fi od; true end, s(n)))[] end:
    seq(T(n), n=1..7);  # Alois P. Heinz, Dec 02 2012

Extensions

More terms and name improved by R. J. Mathar, Nov 30 2012

A211968 Triangle of binary numbers with some initial repeats.

Original entry on oeis.org

11, 110, 111, 1010, 1100, 1101, 1110, 1111, 10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100100, 101000, 101001, 101010, 101011, 101101, 110000, 110001, 110010, 110011, 110100, 110101, 110110, 110111, 111000, 111001, 111010, 111011
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Comments

Triangle read by rows in which row n lists the binary numbers with n digits and with some initial repeats, n >= 2.
Also triangle read by rows in which row n lists the binary words of length n with some initial repeats and with initial digit 1, n >= 2.

Examples

			Triangle begins, starting at row 2:
  11;
  110, 111;
  1010, 1100, 1101, 1110, 1111;
  10100, 10101, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111;
		

Crossrefs

Complement in base 2 of A211027.
Rows lengths give: A093370.

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i;
          for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i]
          then return true fi od; false end, s(n)))[] end:
    seq(T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012
  • Mathematica
    T[n_] := FromDigits /@ Select[Range[2^(n-1), 2^n-1] // IntegerDigits[#, 2]&, FindTransientRepeat[Reverse[#], 2][[2]] != {}&];
    Table[T[n], {n, 2, 7}] // Flatten (* Jean-François Alcover, Feb 12 2025 *)

A211969 Triangle of decimal equivalents of binary numbers with some initial repeats, A211968.

Original entry on oeis.org

3, 6, 7, 10, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 2

Views

Author

Omar E. Pol, Dec 03 2012

Keywords

Examples

			Irregular triangle begins, starting at row 2:
3;
6, 7;
10, 12, 13, 14, 15;
20, 21, 24, 25, 26, 27, 28, 29, 30, 31;
36, 40, 41, 42, 43, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63;
		

Crossrefs

Complement of A211967.
Row lengths give: A093370.
Column 1 gives: A005418(n+1).
Right border gives: A000225(n).

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
          (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
          l[i+1..2*i] then return true fi od; false end, s(n)))[] end:
    seq (T(n), n=2..7);  # Alois P. Heinz, Dec 04 2012

A217209 Irregular triangle read by rows: T(n,k) (n>=1, 1 <= k <= A217208(n)) = number of strings of n 2's and 3's having a tail of length k.

Original entry on oeis.org

2, 2, 1, 1, 4, 2, 2, 6, 5, 3, 1, 1, 12, 9, 6, 2, 3, 20, 18, 12, 6, 7, 0, 0, 0, 1, 40, 34, 25, 11, 14, 1, 0, 1, 2, 74, 71, 47, 24, 28, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2012

Keywords

Comments

See A217208 or A216730 for definition of tail.

Examples

			Rows 1 through 8 are:
2,
2, 1, 1,
4, 2, 2,
6, 5, 3, 1, 1,
12, 9, 6, 2, 3,
20, 18, 12, 6, 7, 0, 0, 0, 1,
40, 34, 25, 11, 14, 1, 0, 1, 2,
74, 71, 47, 24, 28, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1,
148, 139, 95, 48, 56, 6, 4, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1,
...
		

Crossrefs

Cf. A217208 (row lengths), A216813 (means), A122536 (first column), A217210 (second column), A216730, A094004, A090822.

A211967 Triangle of decimal equivalents of binary numbers with no initial repeats, A211027.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 11, 16, 17, 18, 19, 22, 23, 32, 33, 34, 35, 37, 38, 39, 44, 46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 88, 89, 92, 93, 94, 95, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 148, 149, 150
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Examples

			Irregular triangle begins:
1;
2;
4,   5;
8,   9, 11;
16, 17, 18, 19, 22, 23;
32, 33, 34, 35, 37, 38, 39, 44, 46, 47;
		

Crossrefs

Columns 1-2 give: A000079(n-1), A000051(n-1) for n>2. Row n has length A093371(n). Right border gives A083329(n-1).

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
          [[x[], 0], [x[], 1]][], s(n-1))) end:
    T:= proc(n) map (x-> add(x[i]*2^(nops(x)-i), i=1..nops(x)), select
          (proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=
          l[i+1..2*i] then return false fi od; true end, s(n)))[] end:
    seq (T(n), n=1..8);  # Alois P. Heinz, Dec 03 2012

A211973 a(n) = A121880(2*n)/2.

Original entry on oeis.org

1, 5, 22, 91, 369, 1486, 5962, 23884, 95607, 382568, 1530552, 6122765, 24492171, 97970902, 391888040, 1567561019, 6270261786, 25081082556, 100324401036, 401297745749, 1605191266193, 6420765631136, 25683063657239, 102732256894319
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2012

Keywords

Crossrefs

Bisection of A093370.

Extensions

More terms from Hakan Icoz, Sep 04 2020

A217211 Number of binary sequences of length n with curling number 2.

Original entry on oeis.org

0, 2, 2, 6, 12, 26, 52, 110, 214, 438, 876, 1762, 3524, 7084, 14144, 28360, 56720, 113542, 227084, 454448, 908804, 1818168, 3636336, 7273614, 14547228, 29096678, 58192994, 116390424, 232780848, 465569860, 931139720, 1862297158, 3724592874, 7449221168, 14898442336, 29796952652, 59593905304
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2012

Keywords

Crossrefs

Column 2 of A216955. Cf. A122536, A217212.

Extensions

a(33)-a(37) from Allan Wilks, Oct 06 2012

A218870 Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number <= k (1 <= k <= n).

Original entry on oeis.org

2, 2, 2, 4, 6, 6, 6, 10, 12, 12, 12, 24, 28, 30, 30, 20, 40, 48, 52, 54, 54, 40, 92, 112, 120, 124, 126, 126, 74, 174, 210, 226, 234, 238, 240, 240, 148, 362, 438, 474, 490, 498, 502, 504, 504, 286, 700, 860, 928, 960, 976, 984, 988, 990, 990, 572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2012

Keywords

Comments

S is aperiodic if it is not of the form S = T^m with m > 1.
Rows are partial sums of rows of A218869.
Final entries in rows form A027375. First column is A122536.

Examples

			Triangle begins:
[2]
[2, 2]
[4, 6, 6]
[6, 10, 12, 12]
[12, 24, 28, 30, 30]
[20, 40, 48, 52, 54, 54]
[40, 92, 112, 120, 124, 126, 126]
[74, 174, 210, 226, 234, 238, 240, 240]
[148, 362, 438, 474, 490, 498, 502, 504, 504]
[286, 700, 860, 928, 960, 976, 984, 988, 990, 990]
[572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046]
...
		

Crossrefs

A211965 Number of binary sequences of length 2n-1 and curling number 1.

Original entry on oeis.org

2, 4, 12, 40, 148, 572, 2248, 8920, 35536, 141860, 566880, 2266400, 9063372, 36249044, 144987304, 579931488, 2319690516, 9278691224, 37114623248, 148458209744, 593832272556, 2375327957436, 9501309564288, 38005233726372, 152020925844036
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2012

Keywords

Comments

Equivalently, number of binary sequences of length 2n-1 with no initial repeats (see A122536).

Crossrefs

Bisection of A122536.

Formula

a(n) = 2*A093371(2n-1).
a(n) = 2*A211966(n-1), n >= 2.
Previous Showing 11-20 of 23 results. Next