cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A035599 Number of points of L1 norm 5 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 20, 102, 360, 1002, 2364, 4942, 9424, 16722, 28004, 44726, 68664, 101946, 147084, 207006, 285088, 385186, 511668, 669446, 864008, 1101450, 1388508, 1732590, 2141808, 2625010, 3191812, 3852630, 4618712, 5502170, 6516012
Offset: 0

Views

Author

Keywords

Crossrefs

Column 5 of A035607, A266213. Row 5 of A113413, A119800, A122542.

Programs

  • Magma
    [(4*n^4+20*n^2+6)*n/15: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^4/(1-x)^6,{x,0,33}],x] (* Vincenzo Librandi, Apr 23 2012 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,20,102,360,1002},40] (* Harvey P. Dale, Dec 30 2023 *)
  • PARI
    a(n)=(4*n^5+20*n^3+6*n)/15 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (4*n^4+20*n^2+6)*n/15. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^4/(1-x)^6. - Colin Barker, Mar 19 2012
a(n) = 2*A069038(n). - R. J. Mathar, Dec 10 2013
From Shel Kaphan, Mar 01 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=5.
a(n) = A001847(n) - A001846(n).
a(n) = A008413(n)*n/5. (End)

A091928 a(0)=1, a(1)=5; a(n) = 6*a(n-1) + 5*a(n-2) for n > 1.

Original entry on oeis.org

1, 5, 35, 235, 1585, 10685, 72035, 485635, 3273985, 22072085, 148802435, 1003175035, 6763062385, 45594249485, 307380808835, 2072256100435, 13970440646785, 94183924382885, 634955749531235, 4280654119101835
Offset: 0

Views

Author

Paul Barry, Feb 13 2004

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=sum of first row of B^n.

Crossrefs

Cf. A015551.

Programs

  • Magma
    [n le 2 select 5^(n-1) else 6*Self(n-1) +5*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 27 2024
    
  • Mathematica
    LinearRecurrence[{6,5},{1,5},30] (* Harvey P. Dale, Apr 09 2022 *)
  • SageMath
    A091928= BinaryRecurrenceSequence(6,5,1,5)
    [A091928(n) for n in range(41)] # G. C. Greubel, Oct 27 2024

Formula

G.f.: (1-x)/(1-6*x-5*x^2).
a(n) = (1/2 +1/sqrt(14))*(3 +sqrt(14))^n + (1/2 -1/sqrt(14))*(3 -sqrt(14))^n.
From Philippe Deléham, Sep 22 2006: (Start)
a(n) = Sum_{k=0..n} 5^k*A122542(n,k).
Lim_{n->infinity} a(n+1)/a(n) = 3 + sqrt(14) = 6.741657386773... . (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 05 2007

A122558 a(0)=1, a(1)=3, a(n) = 4*a(n-1) + 3*a(n-2) for n > 1.

Original entry on oeis.org

1, 3, 15, 69, 321, 1491, 6927, 32181, 149505, 694563, 3226767, 14990757, 69643329, 323545587, 1503112335, 6983086101, 32441681409, 150715983939, 700188979983, 3252903871749, 15112182426945, 70207441323027, 326166312572943
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006, Sep 22 2006

Keywords

Comments

a(n) is the number of compositions of n when there are 3 types of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Cf. A122542.

Programs

  • Magma
    [n le 2 select 3^(n-1) else 4*Self(n-1) +3*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 27 2024
    
  • Mathematica
    LinearRecurrence[{4,3},{1,3},30] (* Harvey P. Dale, Mar 18 2023 *)
  • PARI
    Vec((1-x)/(1-4*x-3*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2022
    
  • SageMath
    A122558= BinaryRecurrenceSequence(4,3,1,3)
    [A122558(n) for n in range(41)] # G. C. Greubel, Oct 27 2024

Formula

G.f.: (1-x)/(1-4*x-3*x^2).
a(n) = Sum_{k=0..n} 3^k*A122542(n,k).
Limit_{n->infinity} a(n+1)/a(n) = 2 + sqrt(7) = 4.645751311064....
a(n) = ((7+sqrt(7))/14)*(2+sqrt(7))^n + ((7-sqrt(7))/14)*(2-sqrt(7))^n. - Richard Choulet, Nov 20 2008

Extensions

Corrected by T. D. Noe, Nov 07 2006

A123362 a(0) = 1, a(1) = 1, a(n) = 6*a(n-1) + 5*a(n-2) for n > 1.

Original entry on oeis.org

1, 1, 11, 71, 481, 3241, 21851, 147311, 993121, 6695281, 45137291, 304300151, 2051487361, 13830424921, 93239986331, 628592042591, 4237752187201, 28569473336161, 192605600952971, 1298480972398631, 8753913839156641
Offset: 0

Views

Author

Philippe Deléham, Oct 12 2006

Keywords

Comments

Hankel transform is [1, 10, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008

Programs

  • Mathematica
    LinearRecurrence[{6, 5}, {1, 1}, 50] (* G. C. Greubel, Oct 12 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-5*x)/(1 - 6*x - 5*x^2)) \\ G. C. Greubel, Oct 12 2017

Formula

a(n) = Sum_{k = 0..n} 5^(n - k)*A122542(n, k).
G.f.: (1 - 5*x)/(1 - 6*x - 5*x^2).

A336521 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is the coefficient of x^(k*n) in expansion of ( (1 + x)/(1 - x) )^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 2, 16, 38, 1, 1, 2, 24, 146, 192, 1, 1, 2, 32, 326, 1408, 1002, 1, 1, 2, 40, 578, 4672, 14002, 5336, 1, 1, 2, 48, 902, 11008, 69002, 142000, 28814, 1, 1, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 1, 1, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     2,     2,      2,      2, ...
  1,    8,    16,    24,     32,     40, ...
  1,   38,   146,   326,    578,    902, ...
  1,  192,  1408,  4672,  11008,  21440, ...
  1, 1002, 14002, 69002, 216002, 525002, ...
		

Crossrefs

Column k=0-3 give A000012, A123164, A103885, A333715.
Main diagonal gives A336522.

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n + j - 1, n - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 24 2020 *)

Formula

T(n,k) = (1/k) * [x^n] ( (1 + x)/(1 - x) )^(k*n) for k > 0 and n > 0.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j-1,n-1).
T(n,k) = (1/k) * Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j-1,j) for k > 0 and n > 0.
T(n,k) = Sum_{j=1..n} 2^j * binomial(n,j) * binomial(k*n-1,j-1) for n > 0.
T(n,k) = binomial(k*n-1, n-1)*hypergeom([-n, k*n], [1+(k-1)*n], -1) for k > 0. - Stefano Spezia, Aug 09 2025

A210636 Riordan array ((1-x)/(1-2*x-x^2), x*(1+x)/(1-2*x-x^2)).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 7, 13, 7, 1, 17, 40, 32, 10, 1, 41, 117, 124, 60, 13, 1, 99, 332, 437, 286, 97, 16, 1, 239, 921, 1447, 1193, 553, 143, 19, 1, 577, 2512, 4584, 4556, 2682, 952, 198, 22, 1, 1393, 6761, 14048, 16336, 11666, 5282, 1510, 262, 25, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2012

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by (1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Product of A122542 and A007318 (Pascal's triangle) as lower triangular matrices .

Examples

			Triangle begins :
1
1, 1
3, 4, 1
7, 13, 7, 1
17, 40, 32, 10, 1
41, 117, 124, 60, 13, 1
99, 332, 437, 286, 97, 16, 1
239, 921, 1447, 1193, 553, 143, 19, 1
577, 2512, 4584, 4556, 2682, 952, 198, 22, 1
1393, 6761, 14048, 16336, 11666, 5282, 1510, 262, 25, 1
		

Crossrefs

Cf. Columns :A001333, A119915, Diagonals : A000012, A016777, Antidiagonal sums : A077995

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x)/(1-2*x-y*x-x^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A001333(n), A104934(n), A122958(n), A122690(n), A091928(n) for x = -1, 0, 1, 2, 3, 4 respectively.
Previous Showing 21-26 of 26 results.