cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A347462 Number of distinct possible reverse-alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 13, 17, 22, 28, 33, 42, 51, 59, 69, 84, 100, 117, 137, 163, 191, 222, 256, 290, 332, 378, 429, 489, 564, 643, 729, 819, 929, 1040, 1167, 1313, 1473, 1647, 1845, 2045, 2272, 2521, 2785, 3076, 3398, 3744, 4115, 4548, 5010, 5524, 6086
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			Partitions representing each of the a(7) = 11 reverse-alternating products:
     (7) -> 7
    (61) -> 1/6
    (52) -> 2/5
   (511) -> 5
    (43) -> 3/4
   (421) -> 2
  (4111) -> 1/4
   (331) -> 1
   (322) -> 3
  (3211) -> 2/3
  (2221) -> 1/2
		

Crossrefs

The version for non-reverse alternating sum instead of product is A004526.
Counting only integers gives A028310, non-reverse A347707.
The version for factorizations is A038548, non-reverse A347460.
The non-reverse version is A347461.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A122768 counts distinct submultisets of partitions.
A126796 counts complete partitions.
A293627 counts knapsack factorizations by sum.
A301957 counts distinct subset-products of prime indices.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A304793 counts distinct positive subset-sums of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[revaltprod/@IntegerPartitions[n]]],{n,0,30}]

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A301854 Number of positive special sums of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 13, 25, 40, 67, 100, 158, 220, 336, 452, 649, 862, 1228, 1553, 2155, 2738, 3674, 4612, 6124, 7497, 9857, 12118, 15524, 18821, 24152, 28863, 36549, 44002, 54576, 65125, 80943, 95470, 117991, 139382, 169389, 199144, 242925, 283353, 342139, 400701, 479001
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

A positive special sum of an integer partition y is a number n > 0 such that exactly one submultiset of y sums to n.

Examples

			The a(4) = 13 special positive subset-sums:
1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111),
1<=(211),  3<=(211),  4<=(211),
1<=(31),   3<=(31),   4<=(31),
2<=(22),   4<=(22),
4<=(4).
		

Crossrefs

Programs

  • Mathematica
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
    Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(35) from Alois P. Heinz, Apr 08 2018
a(36)-a(43) from Chai Wah Wu, Sep 26 2023

A366754 Number of non-knapsack integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 52, 60, 94, 118, 175, 213, 310, 373, 528, 643, 862, 1044, 1403, 1699, 2199, 2676, 3426, 4131, 5256, 6295, 7884, 9479, 11722, 14047, 17296, 20623, 25142, 29942, 36299, 43081, 51950, 61439, 73668, 87040, 103748, 122149, 145155, 170487
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2023

Keywords

Comments

A multiset is non-knapsack if there exist two different submultisets with the same sum.

Examples

			The a(4) = 1 through a(9) = 13 partitions:
  (211)  (2111)  (321)    (3211)    (422)      (3321)
                 (2211)   (22111)   (431)      (4221)
                 (3111)   (31111)   (3221)     (4311)
                 (21111)  (211111)  (4211)     (5211)
                                    (22211)    (32211)
                                    (32111)    (33111)
                                    (41111)    (42111)
                                    (221111)   (222111)
                                    (311111)   (321111)
                                    (2111111)  (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

The complement is counted by A108917, strict A275972, ranks A299702.
These partitions have ranks A299729.
The strict case is A316402.
The binary version is A366753, ranks A366740.
A000041 counts integer partitions, strict A000009.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sum of partitions, strict A365925.
A365543 counts partitions with subset-sum k, complement A046663.
A365661 counts strict partitions with subset-sum k, complement A365663.
A366738 counts semi-sums of partitions, strict A366741.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Total/@Union[Subsets[#]]&]], {n,0,15}]

Formula

a(n) = A000041(n) - A108917(n).

A108796 Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
Offset: 0

Views

Author

Wouter Meeussen, Jul 09 2005

Keywords

Comments

Counted as orderless pairs since intersection is commutative.

Examples

			Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From _Gus Wiseman_, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
  ((6),(5,1))
  ((6),(4,2))
  ((6),(3,2,1))
  ((5,1),(4,2))
(End)
		

Crossrefs

Column k=2 of A258280.
Main diagonal of A284593 times (1/2).
This is the strict case of A260669.
The ordered version is A365662 = strict case of A054440.
This is the disjoint case of A366132, with twins A366317.
A000041 counts integer partitions, strict A000009.
A002219 counts biquanimous partitions, strict A237258, ordered A064914.

Programs

  • Mathematica
    using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
    nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* Gus Wiseman, Oct 07 2023 *)
  • PARI
    a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023

Formula

a(n) = ceiling(1/2 * [(x*y)^n] Product_{j>0} (1+x^j+y^j)). - Alois P. Heinz, Mar 31 2017
a(n) = ceiling(A365662(n)/2). - Gus Wiseman, Oct 07 2023

Extensions

Name edited by Gus Wiseman, Oct 10 2023
a(0)=1 prepended by Alois P. Heinz, Feb 09 2024

A301855 Number of divisors d|n such that no other divisor of n has the same Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 4, 6, 2, 6, 2, 6, 4, 4, 4, 5, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 4, 7, 4, 8, 2, 6, 4, 6, 2, 4, 2, 4, 6, 6, 4, 8, 2, 6, 5, 4, 2, 6, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 4, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Examples

			The a(24) = 4 special divisors are 1, 2, 12, 24.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
    Table[Length[uqsubs[primeMS[n]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A301855(n) = if(1==n,n,my(m=Map(),w,s); fordiv(n,d,w = A056239(d); if(!mapisdefined(m, w, &s), mapput(m,w,Set([d])), mapput(m,w,setunion(Set([d]),s)))); sumdiv(n,d,(1==length(mapget(m,A056239(d)))))); \\ Antti Karttunen, Jul 01 2018

Extensions

More terms from Antti Karttunen, Jul 01 2018

A301900 Heinz numbers of strict non-knapsack partitions. Squarefree numbers such that more than one divisor has the same Heinz weight A056239(d).

Original entry on oeis.org

30, 70, 154, 165, 210, 273, 286, 330, 390, 442, 462, 510, 546, 561, 570, 595, 646, 690, 714, 741, 770, 858, 870, 874, 910, 930, 1045, 1110, 1122, 1155, 1173, 1190, 1230, 1254, 1290, 1326, 1330, 1334, 1365, 1410, 1430, 1482, 1495, 1590, 1610, 1653, 1770
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[1000],SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]

Formula

Complement of A005117 in A299702.

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   4  0  2  0  1  0
   5  1  0  3  1  1  0
   8  0  3  0  3  0  1  0
  10  2  1  2  2  3  1  1  0
  16  0  5  0  3  0  5  0  1  0
  20  2  2  4  2  6  0  4  1  1  0
  31  0  6  0  8  0  5  0  5  0  1  0
  39  4  4  4  1  6  6  3  2  6  1  1  0
  55  0 13  0  8  0 12  0  6  0  6  0  1  0
  71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
Row n = 6 counts the following partitions:
  (321)     (411)  .  (51)   (33)  (6)  .
  (3111)              (42)
  (2211)              (222)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The rank statistic counted by this triangle is A325799.
The strict case is A365545, weighted row sums A365922.
The complement (positive subset-sum) is A365658.
Weighted row sums are A365918, for positive subset-sums A304792.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]

A305611 Number of distinct positive subset-sums of the multiset of prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 7, 1, 5, 3, 6, 1, 10, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 10, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Comments

An integer n is a positive subset-sum of a multiset y if there exists a nonempty submultiset of y with sum n.
One less than the number of distinct values obtained when A001414 is applied to all divisors of n. - Antti Karttunen, Jun 13 2018

Examples

			The a(12) = 5 positive subset-sums of {2, 2, 3} are 2, 3, 4, 5, and 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[p,{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
    v001414 = vector(up_to,n,A001414(n));
    A305611(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v001414[d]), mapput(m,s,s); k++)); (k-1); }; \\ Antti Karttunen, Jun 13 2018
    
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A305611(n):
        fs = factorint(n)
        return len(set(sum(d) for i in range(1,sum(fs.values())+1) for d in multiset_combinations(fs,i))) # Chai Wah Wu, Aug 23 2021
Previous Showing 21-30 of 55 results. Next