cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A059015 Total number of 0's in binary expansions of 0, ..., n.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 6, 9, 11, 13, 14, 16, 17, 18, 18, 22, 25, 28, 30, 33, 35, 37, 38, 41, 43, 45, 46, 48, 49, 50, 50, 55, 59, 63, 66, 70, 73, 76, 78, 82, 85, 88, 90, 93, 95, 97, 98, 102, 105, 108, 110, 113, 115, 117, 118, 121, 123, 125, 126, 128, 129, 130, 130, 136, 141
Offset: 0

Views

Author

Patrick De Geest, Dec 15 2000

Keywords

Comments

Partial sums of A023416. - Reinhard Zumkeller, Jul 15 2011
The graph of this sequence is a version of the Takagi curve: see Lagarias (2012), Section 9, especially Theorem 9.1. - N. J. A. Sloane, Mar 12 2016

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652.

Programs

  • Haskell
    a059015 n = a059015_list !! n
    a059015_list = scanl1 (+) $ map a023416 [0..]
    -- Reinhard Zumkeller, Jul 15 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)+add(1-i, i=Bits[Split](n))) end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Nov 11 2024
  • Mathematica
    Accumulate[ Table[ Count[ IntegerDigits[n, 2], 0], {n, 0, 65}]] (* Jean-François Alcover, Oct 03 2012 *)
    Accumulate[DigitCount[Range[0,70],2,0]] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    v=vector(100,i,1);for(i=1,#v-1,v[i+1] = v[i] + #binary(i) - hammingweight(i)); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    a(n)=if(n, my(m=logint(n,2)); 2 + (m+1)*(n+1) - 2^(m+1) + sum(j=1,m+1, my(t=floor(n/2^j + 1/2)); (n>>j)*(2*n + 2 - (1 + (n>>j))<Charles R Greathouse IV, Dec 14 2015
    
  • Python
    def A059015(n): return 2+(n+1)*(m:=(n+1).bit_length())-(1<Chai Wah Wu, Mar 01 2023
    
  • Python
    def A059015(n): return 2+(n+1)*((t:=(n+1).bit_length())-n.bit_count())-(1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 11 2024

Formula

a(n) = b(n)+1, with b(2n) = b(n)+b(n-1)+n, b(2n+1) = 2b(n)+n. - Ralf Stephan, Sep 13 2003
From Hieronymus Fischer, Jun 10 2012: (Start)
With m = floor(log_2(n)):
a(n) = 2 + (m+1)*(n+1) - 2^(m+1) + (1/2)*Sum_{j=1..m+1} (floor(n/2^j)*(2*n + 2 - (1 + floor(n/2^j))*2^j) - floor(n/2^j + 1/2)*(2*n + 2 - floor(n/2^j + 1/2)*2^j)).
a(n) = A083652(n) - (n+1)*A000120(n) + 2^(m-1) - (1/4) + (1/2)*sum_{j=1..m+1} (floor(n/2^j + 1/2)^2 - (floor(n/2^j) + 1/2)^2)*2^j.
a(2^m-1) = 2 + (m-2)*2^(m-1)
(this is the total number of zero digits occurring in all the numbers with <= m places).
G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{j>=0} x^(2*2^j)/(1 + x^(2^j)); corrected by Ilya Gutkovskiy, Mar 28 2018
General formulas for the number of digits <= d in the base p representations of all integers from 0 to n, where 0 <= d < p.
With m = floor(log_p(n)):
a(n) = 1 + (m+1)*(n+1) - (p^(m+1)-1)/(p-1) + (1/2)*sum_{j=1..m+1} (floor(n/p^j)*(2n + 2 - (1 + floor(n/p^j))*p^j) - floor(n/p^j + (p-d-1)/p)*(2n + 2 + ((p-2*d-2)/p - floor(n/p^j + (p-d-1)/p))*p^j)).
a(n) = H(n,p) - (n+1)*F(n,p,d+1) + (1/2)*sum_{j=1..m+1} ((floor(n/p^j + (p-d-1)/p)^2 - floor(n/p^j)^2)*p^j - (((p - 2*d-2)/p)*floor(n/p^j + (p-d-1)/p) + floor(n/p^j))*p^j), where H(n,p) = sum of number of digits in the base p representations of 0 to n and F(n,p,d) = number of digits >=d in the base p representation of n.
a(p^m-1) = 1 + (d+1)*m*p^(m-1) - (p^m-1)/(p-1).
(this is the total number of digits <= d occurring in all the numbers with <= m places in base p representation).
G.f.: 1/(1-x) + (1/(1-x)^2)*Sum_{j>=0} ((1-x^(d*p^j))*x^p^j + (1-x^p^j)*x^p^(j+1)/(1-x^p^(j+1))). (End)

A055640 Number of nonzero digits in decimal expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

Comment from Antti Karttunen, Sep 05 2004: (Start)
Also number of characters needed to write the number n in classical Greek alphabetic system, up to n=999. The Greek alphabetic system assigned values to the letters as follows:
alpha = 1, beta = 2, gamma = 3, delta = 4, epsilon = 5, digamma = 6, zeta = 7, eta = 8, theta = 9, iota = 10, kappa = 20, lambda = 30, mu = 40, nu = 50, xi = 60, omicron = 70, pi = 80, koppa = 90, rho = 100, sigma = 200, tau = 300, upsilon = 400, phi = 500, chi = 600, psi = 700, omega = 800, sampi = 900. (End)
For partial sums see A102685. - Hieronymus Fischer, Jun 06 2012

Examples

			129 is written as rho kappa theta in the old Greek system.
		

References

  • L. Threatte, The Greek Alphabet, in The World's Writing Systems, edited by Peter T. Daniels and William Bright, Oxford Univ. Press, 1996, p. 278.

Crossrefs

Differs from A098378 for the first time at position n=200 with a(200)=1, as only one nonzero Arabic digit (and only one Greek letter) is needed for two hundred, while A098378(200)=2 as two characters are needed in the Ethiopic system.

Programs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j+0.9) - floor(n/10^j)), where m = floor(log_10(n)).
a(n) = m + 1 - A055641(n).
G.f.: (1/(1-x))*Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(n) = A055642(n) - A055641(n).

A102669 Number of digits >= 2 in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007088 (numbers in base 2). - Bernard Schott, Feb 19 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=2 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[DigitCount@ n, {2, 9}], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

Contribution from Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 4/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(2*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
General formulas for the number of digits >= d in the decimal representations of n, where 1 <= d <= 9:
a(n) = Sum_{j=1..m+1} (floor(n/10^j + (10-d)/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102685 Partial sums of A055640.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A055640(n) + (1/2)*Sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)
G.f.: g(x) = (1/(1-x)^2) * Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

A160093 Number of digits in n, excluding any trailing zeros.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Examples

			a(1060000) = 3 because discarding the trailing zeros from 1060000 leaves 106, which is a 3-digit number.
		

Crossrefs

Programs

  • Mathematica
    lnzd[n_]:=Module[{spl=Last[Split[IntegerDigits[n]]]},If[!MemberQ[ spl,0], IntegerLength[n], IntegerLength[n]-Length[spl]]]; Array[lnzd,110] (* Harvey P. Dale, Jun 05 2013 *)
    Table[IntegerLength[n] - IntegerExponent[n, 10], {n, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n)=if(n==0,1,#digits(n/10^valuation(n,10))) \\ Joerg Arndt, Jan 11 2017
    
  • PARI
    a(n)=logint(n,10)+1-valuation(n,10) \\ Charles R Greathouse IV, Jan 12 2017
  • Python
    def A160093(n):
         return len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jan 11 2017
    

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = 1 + Sum_{j=0..m} ceiling(frac(n/10^j)).
a(n) = 1 - Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n)= A055642(n) + A054899(n-1) - A054899(n).
G.f.: (x/(1-x)) + (1/(1-x))*Sum_{j>0} x^(10^j+1)*(1 - x^(10^j-1))/(1-x^10^j). (End)
a(n) = A055642(A004086(n)). - Indranil Ghosh, Jan 11 2017
a(n) = A055642(A004151(n)). - Amiram Eldar, Sep 14 2020

Extensions

Simpler definition and changed example from Jon E. Schoenfield, Feb 15 2014

A004151 Omit trailing zeros from n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 7, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1, 101, 102, 103, 104, 105, 106, 107, 108, 109, 11, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a004151 = until ((> 0) . (`mod` 10)) (`div` 10)
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Mathematica
    Flatten[Table[n/Take[Intersection[Divisors[n], 10^Range[0, Floor[Log[10, n]]]], -1], {n, 120}]] (* Alonso del Arte, Feb 02 2012 *)
    Table[n/10^IntegerExponent[n,10],{n,120}] (* Harvey P. Dale, May 02 2018 *)
  • PARI
    a(n)=n/10^valuation(n,10) \\ Charles R Greathouse IV, Oct 31 2012
    
  • Python
    def A004151(n):
        a, b = divmod(n,10)
        while not b:
            n = a
            a, b = divmod(n,10)
        return n # Chai Wah Wu, Feb 20 2024

Formula

a(n) = a(n/10) if n mod 10 = 0, otherwise n. - Reinhard Zumkeller, Feb 02 2012
G.f. A(x) satisfies: A(x) = A(x^10) + x/(1 - x)^2 - 10*x^10/(1 - x^10)^2. - Ilya Gutkovskiy, Oct 27 2019
Sum_{k=1..n} a(k) ~ (5/11) * n^2. - Amiram Eldar, Nov 20 2022

A102683 Number of digits 9 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    a102683 =  length . filter (== '9') . show
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    a[n_] := DigitCount[n, 10, 9]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)

Formula

a(A007095(n)) = 0; a(A011539(n)) > 0. - Reinhard Zumkeller, Dec 29 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/10) - floor(n/10^j)), where m=floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(A235049(n)) = 0. - Reinhard Zumkeller, Apr 16 2014

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A004154 a(n) = n! with trailing zeros omitted.

Original entry on oeis.org

1, 1, 2, 6, 24, 12, 72, 504, 4032, 36288, 36288, 399168, 4790016, 62270208, 871782912, 1307674368, 20922789888, 355687428096, 6402373705728, 121645100408832, 243290200817664, 5109094217170944, 112400072777760768, 2585201673888497664, 62044840173323943936
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000142, A004151, A008904 (mod 10).

Programs

  • Haskell
    a004154 = a004151 . a000142
    a004154_list = scanl (\u v -> a004151 $ u * v) 1 [1..]
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [Factorial(n)/10^Valuation(Factorial(n), 5): n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
    
  • Maple
    a:= n-> (f-> f/10^padic[ordp](f,10))(n!):
    seq(a(n), n=0..29);  # Alois P. Heinz, Dec 29 2021
  • Mathematica
    Array[#!//.x_/;x~Mod~5==0:>x/10&,22]  (* Giorgos Kalogeropoulos, Aug 17 2020 *)
    Join[{1,1,2,6,24},Table[FromDigits[Flatten[Most[Split[IntegerDigits[n!]]]]],{n,5,30}]] (* or *) Table[n!/10^IntegerExponent[n!,10],{n,0,30}] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n)=n!/10^valuation(n!,5) \\ M. F. Hasler, Oct 16 2014
    
  • Python
    from sympy import factorial
    from sympy.ntheory.factor_ import digits
    def A004154(n): return factorial(n)//10**(n-sum(digits(n,5)[1:])>>2) # Chai Wah Wu, Oct 18 2024
    
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        f = 1
        for n in count(1):
            yield f
            while n%10 == 0: n //= 10
            f *= n
            while f%10 == 0: f //= 10
    print(list(islice(agen(), 25))) # Michael S. Branicky, Apr 11 2025

Formula

a(n) = A000142(n) / 10^A027868(n). - Reinhard Zumkeller, Nov 24 2012
a(n+1) = A004151((n+1)*a(n)). - Reinhard Zumkeller, Nov 24 2012, corrected by M. F. Hasler, Oct 16 2014
a(n) = A004151(A000142(n)) = A000142(n)/A011557(A112765(n)), or A122840 instead of A112765. - M. F. Hasler, Oct 16 2014

A035614 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 7, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 8, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3
Offset: 0

Views

Author

Keywords

Comments

This is probably the same as the "Fibonacci ruler function" mentioned by Knuth. - N. J. A. Sloane, Aug 03 2012
From Amiram Eldar, Mar 10 2021: (Start)
a(n) is the number of the trailing zeros in the Zeckendorf representation of (n+1) (A014417).
The asymptotic density of the occurrences of k is 1/phi^(k+2), where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is phi. (End)

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179.

Crossrefs

Programs

  • Haskell
    a035614 = a122840 . a014417 . (+ 1)  -- Reinhard Zumkeller, Mar 10 2013
    
  • Mathematica
    max = 81; wy = Table[(n-k)*Fibonacci[k] + Fibonacci[k+1]*Floor[ GoldenRatio*(n - k + 1)], {n, 1, max}, {k, 1, n}]; a[n_] := Position[wy, n][[1, 2]]-1; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Nov 02 2011 *)
  • Python
    from sympy import fibonacci
    def a122840(n): return len(str(n)) - len(str(int(str(n)[::-1])))
    def a014417(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def a(n): return a122840(a014417(n + 1)) # Indranil Ghosh, Jun 09 2017, after Haskell code by Reinhard Zumkeller

Formula

The segment between the first M and the first M+1 is given by the segment before the first M-1.
a(n) = A122840(A014417(n + 1)). - Indranil Ghosh, Jun 09 2017

A102489 Take the decimal representation of n and read it as if it were written in hexadecimal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

List of numbers in base-16 representation that can be written with decimal digits.
Early in the sequence there are blocks recurring as a(n) = a(n-10)+16, but this pattern starts to fail when we reach 160, 161, ... with hex-representations A0, A1, ... which cannot be written with decimal digits. - Rick L. Shepherd, Jun 08 2012
Binary Coded Decimal (BCD) codes, common in electronics, when interpreted as plain binary-coded integers. For example, number 39 is BCD coded in two nibbles as 0011 1001 which is the binary expansion of 57; hence, taking into account the offset, a(1+39) = 57. - Stanislav Sykora, Jun 09 2012
Integers that avoid letters in their hexadecimal expansion. - Eliora Ben-Gurion, Aug 28 2019

Examples

			10 in decimal is 16 in base 16, so a(10)=16.
		

Crossrefs

Cf. A090725 (the subsequence of primes).

Programs

  • Haskell
    import Data.Maybe (fromJust, mapMaybe)
    a102489 n = a102489_list !! (n-1)
    a102489_list = mapMaybe dhex [0..] where
       dhex 0                         = Just 0
       dhex x | d > 9 || y == Nothing = Nothing
              | otherwise             = Just $ 16 * fromJust y + d
              where (x', d) = divMod x 16; y = dhex x'
    -- Reinhard Zumkeller, Jul 06 2012
  • Maple
    o10:= n -> min(padic:-ordp(n,2),padic:-ordp(n,5)):
    d:= [0,seq((2*16^o10(n)+3)/5, n=1..1000)]:
    ListTools:-PartialSums(d); # Robert Israel, Aug 30 2015
  • Mathematica
    Table[FromDigits[IntegerDigits[n], 16], {n, 0, 70}] (* Ivan Neretin, Aug 12 2015 *)

Formula

a(n) - a(n-1) = (2*16^A122840(n) + 3)/5. - Robert Israel, Aug 30 2015

Extensions

Edited by N. J. A. Sloane, Feb 08 2014 (changed definition, moved old definition to comment, changed offset and b-file).
Previous Showing 11-20 of 48 results. Next