cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A123868 a(n) = n^12 - 1.

Original entry on oeis.org

0, 4095, 531440, 16777215, 244140624, 2176782335, 13841287200, 68719476735, 282429536480, 999999999999, 3138428376720, 8916100448255, 23298085122480, 56693912375295, 129746337890624, 281474976710655, 582622237229760, 1156831381426175, 2213314919066160
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 13 = 0 iff n mod 13 > 0; a(A008595(n)) = 12; a(A113763(n)) = 0.

Crossrefs

Programs

Formula

From Chai Wah Wu, Jun 18 2016: (Start)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n > 12.
G.f.: x*(4095 + 478205*x + 10187905*x^2 + 66317979*x^3 + 162513078*x^4 + 162511362*x^5 + 66319266*x^6 + 10187190*x^7 + 478491*x^8 + 4017*x^9 + 13*x^10 - x^11)/(1 - x)^13. (End)

A123867 a(n) = n^10 - 1.

Original entry on oeis.org

0, 1023, 59048, 1048575, 9765624, 60466175, 282475248, 1073741823, 3486784400, 9999999999, 25937424600, 61917364223, 137858491848, 289254654975, 576650390624, 1099511627775, 2015993900448, 3570467226623, 6131066257800, 10239999999999, 16679880978200
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 11 = 0 iff n mod 11 > 0; a(A008593(n)) = 10.

Crossrefs

Programs

Formula

From G. C. Greubel, Aug 08 2019: (Start)
G.f.: x^2*(1023 + 47795*x + 455312*x^2 + 1310144*x^3 + 1310606*x^4 + 454982*x^5 + 47960*x^6 + 968*x^7 + 11*x^8 + x^9)/(1-x)^11.
E.g.f.: 1 +(-1 + x + 511*x^2 + 9330*x^3 + 34105*x^4 + 42525*x^5 + 22827*x^6 + 5880*x^7 + 750*x^8 + 45*x^9 + x^10)*exp(x). (End)

A258807 a(n) = n^5 - 1.

Original entry on oeis.org

0, 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, 99999, 161050, 248831, 371292, 537823, 759374, 1048575, 1419856, 1889567, 2476098, 3199999, 4084100, 5153631, 6436342, 7962623, 9765624, 11881375, 14348906, 17210367, 20511148, 24299999, 28629150, 33554431
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A181124.
Sequences of the type n^k-1: A132411 (k=2), A068601 (k=3), A123865 (k=4), this sequence (k=5), A123866 (k=6), A258808 (k=7), A258809 (k=8), A258810 (k=9), A123867 (k=10), A258812 (k=11), A123868 (k=12).

Programs

  • GAP
    List([1..35],n->n^5-1); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [n^5-1: n in [1..50]];
    
  • Magma
    I:=[0,31,242,1023, 3124,7775]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+ 6*Self(n-5)-Self(n-6): n in [1..50]];
    
  • Maple
    seq(n^5-1,n=1..35); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[n^5 - 1, {n, 1, 50}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 31, 242, 1023, 3124, 7775}, 50]
  • PARI
    a(n)=n^5-1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Python
    for n in range(1, 50): print(n**5 - 1, end=', ') # Stefano Spezia, Oct 28 2018
  • Sage
    [n^5-1 for n in (1..50)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: x^2*(31 + 56*x + 36*x^2 - 4*x^3 + x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = -A024003(n). - Bruno Berselli, Jun 11 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(5*n) - 1) = 0.0379539032... - Amiram Eldar, Nov 06 2020

A024002 a(n) = 1 - n^4.

Original entry on oeis.org

1, 0, -15, -80, -255, -624, -1295, -2400, -4095, -6560, -9999, -14640, -20735, -28560, -38415, -50624, -65535, -83520, -104975, -130320, -159999, -194480, -234255, -279840, -331775, -390624, -456975, -531440, -614655, -707280, -809999, -923520, -1048575, -1185920, -1336335, -1500624
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A123865.

Programs

  • Magma
    [1-n^4: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
    
  • Mathematica
    Table[1 - n^4, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *)
    CoefficientList[Series[(1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5) \\ G. C. Greubel, May 11 2017

Formula

a(n) = -A123865(n) for n>0.
From G. C. Greubel, May 11 2017: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (1 - 5*x - 5*x^2 - 15*x^3)/(1 - x)^5.
E.g.f.: (1 - x - 7*x^2 - 6*x^3 - x^4)*exp(x). (End)
Sum_{k>=2} -1/a(k) = A256919 = 7/8 - Pi*coth(Pi)/4. - Vaclav Kotesovec, Dec 08 2020

Extensions

Corrected by T. D. Noe, Nov 08 2006

A129292 Number of divisors of n^4 - 1 that are not greater than n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 5, 3, 8, 3, 10, 4, 6, 4, 12, 4, 13, 4, 11, 6, 14, 3, 10, 6, 12, 6, 17, 3, 16, 7, 10, 9, 13, 4, 18, 7, 11, 4, 22, 3, 26, 8, 9, 7, 23, 5, 18, 7, 13, 6, 25, 4, 24, 8, 21, 6, 18, 3, 18, 10, 12, 14, 16, 4, 26, 8, 17, 7, 31, 5, 30, 6, 11, 13, 26, 7, 25, 6, 16, 10, 35, 4, 18, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 09 2007

Keywords

Comments

a(n) = #{d: d<=n and A123865(n) mod d = 0};
a(n)>1 for n>2, see A129293 for m such that a(m)=2: a(A129293(n))=2.

Examples

			a(100) = #{1,3,9,11,33,73,99} = 7.
		

Crossrefs

Programs

A260478 Cyclotomic polynomial value Phi(8,n!).

Original entry on oeis.org

2, 2, 17, 1297, 331777, 207360001, 268738560001, 645241282560001, 2642908293365760001, 17340121312772751360001, 173401213127727513600000001, 2538767161403058526617600000001, 52643875858853821607942553600000001, 1503561738404723998944447273369600000001
Offset: 0

Views

Author

Robert Price, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Cyclotomic[8, n!], {n, 0, 200}]
  • PARI
    a(n)=polcyclo(8,n!) \\ Charles R Greathouse IV, Aug 29 2015

Formula

a(n) = A123865(n!) for n>0.

A374708 Triangle T read by rows: T(n,k) = (n - k)*n*(4*n^2 - 4*n*k + 2*k^2 - 1 + (-1)^k)/4, with 0 <= k < n.

Original entry on oeis.org

1, 16, 4, 81, 36, 15, 256, 144, 80, 32, 625, 400, 255, 140, 65, 1296, 900, 624, 396, 240, 108, 2401, 1764, 1295, 896, 609, 364, 175, 4096, 3136, 2400, 1760, 1280, 864, 544, 256, 6561, 5184, 4095, 3132, 2385, 1728, 1215, 756, 369, 10000, 8100, 6560, 5180, 4080, 3100, 2320, 1620, 1040, 500
Offset: 1

Views

Author

Stefano Spezia, Jul 17 2024

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the Hankel matrix M(n) whose permanent is A374668(n).

Examples

			n\k|    0    1    2    3    4    5
---+------------------------------
1  |    1
2  |   16    4
3  |   81   36   15
4  |  256  144   80   32
5  |  625  400  255  140   65
6  | 1296  900  624  396  240  108
      ...
For n = 3 the matrix M is
  [ 1,  4, 15]
  [ 4, 15, 32]
  [15, 32, 65]
and therefore T(3, 0) = 1 + 15 + 65 = 81, T(3, 1) = 4 + 32 = 36, and T(3, 2) = 15.
		

Crossrefs

Cf. A317614 (diagonal), A374668.
Cf. A000583 (k=0), A035287 (k=1), A123865, A374709 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=(n-k)*n*(4*n^2 - 4*n*k+2*k^2-1+(-1)^k)/4; Table[T[n,k],{n,10},{k,0,n-1}]//Flatten

Formula

O.g.f.: x*(1 - 4*x^8*y^5 + x*(11 + 2*y) - x^7*y^4*(7 + 16*y) - x^2*(-11 + 6*y - 6*y^2) - x^5*y^2*(2 - 46*y - 3*y^2) - x^6*y^3*(-2 - 27*y + 4*y^2) - x^3*(-1 + 18*y + 38*y^2 - 2*y^3) - x^4*y*(2 + 14*y + 2*y^2 - y^3))/((1 - x)^5*(1 - x*y)^4*(1 + x*y)^2).
T(n,2) = A123865(n-1) for n > 1.

A261535 Primes of the form Phi(8,n!), where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 17, 1297, 331777, 1503561738404723998944447273369600000001
Offset: 1

Views

Author

Robert Price, Aug 28 2015

Keywords

Comments

a(6) is 730 digits.

Crossrefs

Programs

  • Mathematica
    Select[Table[Cyclotomic[8, n!], {n, 0, 200}], PrimeQ]
  • PARI
    for(n=1, 500, if(isprime(k=polcyclo(8, n!)), print1(k", "))) \\ Altug Alkan, Nov 16 2015

A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.

Original entry on oeis.org

0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
Offset: 2

Views

Author

Stefano Spezia, Jul 11 2020

Keywords

Comments

T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.

Examples

			The table starts at row n = 2 and column k = 1 as:
0   7   26   63  124   215 ...
1  15   53  127  249   431 ...
2  23   80  191  374   647 ...
3  31  107  255  499   863 ...
4  39  134  319  624  1079 ...
5  47  161  383  749  1295 ...
...
		

Crossrefs

Cf. A000578, A001093, A001477 (k = 1), A004771 (k = 2), A068601 (n = 2), A085537, A109129, A123865 (main diagonal), A325543, A325612.

Programs

  • Mathematica
    T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
  • PARI
    T(n, k) = (n - 1)*k^3 - 1

Formula

O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
T(n, k) = n*A000578(k) - A001093(k).
T(n, n) = A085537(n) - 1 for n > 1.
T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).
Previous Showing 11-19 of 19 results.