cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A243660 Triangle read by rows: the x = 1+q Narayana triangle at m=2.

Original entry on oeis.org

1, 3, 2, 12, 16, 5, 55, 110, 70, 14, 273, 728, 702, 288, 42, 1428, 4760, 6160, 3850, 1155, 132, 7752, 31008, 50388, 42432, 19448, 4576, 429, 43263, 201894, 395010, 418950, 259350, 93366, 18018, 1430, 246675, 1315600, 3010700, 3853696, 3010700, 1466080, 433160, 70720, 4862
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*...*(x+2n+1) / (n! * (2n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
The Maple code T(n,k) := binomial(3*n+1-k,n-k)*binomial(2*n,k-1)/n: with(sumtools): sumrecursion( (-1)^(k+1)*T(n,k)*binomial(x+3*n-k+1, 3*n-k+1), k, s(n) ); returns the recurrence 2*(2*n+1)*n^2*s(n) = (x+n)*(x+2*n)*(x+2*n+1)*s(n-1). The above observation follows from this. - Peter Bala, Oct 30 2022

Examples

			Triangle begins:
     1;
     3,    2;
    12,   16,    5;
    55,  110,   70,   14;
   273,  728,  702,  288,   42;
  1428, 4760, 6160, 3850, 1155,  132;
  ...
		

Crossrefs

Row sums give A034015(n-1).
The case m=1 is A126216 or A033282 (its mirror image).
The case m=3 is A243661.
The right diagonal is A000108.
The left column is A001764.
Same table as A383453, transposed. - Dan Eilers, May 06 2025

Programs

  • Mathematica
    polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
    P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1);
    T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
    T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
  • PARI
    N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);
    T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));
    T(2)  /* Lars Blomberg, Jul 17 2017 */
    
  • PARI
    T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ Andrew Howroyd, Nov 23 2018

Formula

From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.
More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)

Extensions

Corrected example and a(22)-a(43) from Lars Blomberg, Jul 12 2017
a(44)-a(45) from Werner Schulte, Nov 23 2018

A126182 Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 9, 1, 16, 56, 50, 14, 1, 32, 160, 220, 110, 20, 1, 64, 432, 840, 645, 210, 27, 1, 128, 1120, 2912, 3150, 1575, 364, 35, 1, 256, 2816, 9408, 13552, 9534, 3388, 588, 44, 1, 512, 6912, 28800, 53088, 49644, 24822, 6636, 900, 54, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 19 2006, Mar 30 2007

Keywords

Comments

Also T(n,k) is number of hex trees with n edges and k left edges (0<=k<=n). A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). Accordingly, one can have left, vertical, or right edges.
Also (with a different offset) T(n,k) is the number of skew Dyck paths of semilength n and having k peaks (1<=k<=n). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. E.g., T(3,2)=5 because we have (UD)U(UD)D, (UD)U(UD)L, U(UD)D(UD), U(UD)(UD)D and U(UD)(UD)L (the peaks are shown between parentheses).
Sum of terms in row n = A002212(n+1). T(n,1) = A001793(n); T(n,2) = A006974(n-2); Sum_{k=0..n}kT(n,k) = A026379(n+1).
A126216 = N * P. - Gary W. Adamson, Nov 30 2007

Examples

			The triangle P begins
  1,
  1, 1
  1, 2, 1
  1, 3, 3, 1, ...
and T begins
  1,
  1,  1,
  1,  3,  1,
  1,  6,  6,  1,
  1, 10, 20, 10, 1, ...
The product P*T gives
   1,
   2,  1,
   4,  5,  1,
   8, 18,  9,  1,
  16, 56, 50, 14, 1, ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k=0 then 2^n elif k<=n then binomial(n+1,k)*sum(binomial(k,n-k-j)*binomial(n+1-k,j)*2^j,j=n-2*k..n-k)/(n+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, 0] := 2^n; t[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k, n-k-j]*Binomial[n+1-k, j]*2^j, {j, n-2*k, n-k}]/(n+1); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2013 *)
    nmax = 10; n[x_, y_] := (1-x*(1+y) - Sqrt[(1-x*(1+y))^2 - 4*y*x^2])/(2*x); s = Series[(n[x/(1-x), y]-1)/x, {x, 0, nmax+1}, {y, 0, nmax+1}];t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 16 2015, after Vladimir Kruchinin *)
  • PARI
    tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mP*mN; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015

Formula

T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=n-2k..n-k}2^j*binomial(k,n-k-j)*binomial(n+1-k,j) if 0 < k <= n; T(n,0) = 2^n.
G.f. G=G(t,z) satisfies G = 1 + (t+2)*z*G + t*z^2*G^2.
E.g.f.: exp((t+2)*x)*BesselI_{1}(2*sqrt(t)*x)/(sqrt(t)*x). - Peter Luschny, Oct 29 2014
G.f.: N(x/(1-x),y)-1)/x, where N(x,y) is the g.f. of Narayana's triangle A001263. - Vladimir Kruchinin, Apr 06 2015.

Extensions

New definition in terms of P and N from Philippe Deléham, Jun 30 2007
Edited by N. J. A. Sloane, Jul 22 2007

A269732 Dimensions of the 4-polytridendriform operad TDendr_4.

Original entry on oeis.org

1, 9, 101, 1269, 17081, 240849, 3511741, 52515549, 801029681, 12414177369, 194922521301, 3094216933509, 49575333021801, 800645021406369, 13020241953611181, 213025792632813549, 3504075376813414241, 57914491106005287849, 961297812844696640581, 16017765308027639317269, 267831397282643166904601, 4492625888792276208945009, 75578709400747348254905501
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else (9*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
  • Mathematica
    Rest[CoefficientList[Series[(1 - 9*x - Sqrt[1 - 18*x + x^2])/(40*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
    Table[-I*LegendreP[n, -1, 2, 9]/(2*Sqrt[5]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 9, (n+1) a[n] == 9 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
  • PARI
    A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
    dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
    my(q=4); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
    
  • PARI
    my(q=4, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
    

Formula

a(n) = P_n(4), where P_n(x) is the polynomial associated with row n of triangle A126216 in order of decreasing powers of x.
Recurrence: (n+1)*a(n) = 9*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ sqrt(40 + 18*sqrt(5)) * (9 + 4*sqrt(5))^n / (40*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ phi^(6*n + 3) / (2^(5/2) * 5^(3/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 23 2017
A(x) = -serreverse(A005060(x))(-x). - Gheorghe Coserea, Sep 30 2017
O.g.f.: A(x) = (1 - sqrt(1 - 18*x + x^2) - 9*x)/(40*x). - Peter Bala, Jan 25 2018
From Peter Bala, Dec 25 2020: (Start)
a(n) = (1/(2*m*(m+1))) * Integral_{x = 1..2*m+1} Legendre_P(n,x) dx at m = 4.
a(n) = (1/(2*n+1)) * (1/(2*m*(m+1))) * ( Legendre_P(n+1,2*m+1) - Legendre_P(n-1,2*m+1) ) at m = 4. (End)

Extensions

More terms from Gheorghe Coserea, Apr 23 2016

A243661 Triangle read by rows: the x = 1+q Narayana triangle at m=3.

Original entry on oeis.org

1, 4, 3, 22, 33, 12, 140, 315, 231, 55, 969, 2907, 3213, 1547, 273, 7084, 26565, 39270, 28560, 10200, 1428, 53820, 242190, 448500, 437000, 235980, 66861, 7752, 420732, 2208843, 4916457, 6009003, 4351347, 1864863, 437437, 43263, 3362260, 20173560, 52451256, 77134200, 70122000, 40320150, 14307150, 2861430, 246675
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Examples

			Triangle begins:
     1;
     4,     3;
    22,    33,    12;
   140,   315,   231,    55;
   969,  2907,  3213,  1547,   273;
  7084, 26565, 39270, 28560, 10200,  1428;
  ...
		

Crossrefs

The left column is A002293, the main diagonal is A001764.
The case m=1 is A126216 or A033282 (its mirror image).
The case m=2 is A243660.

Programs

  • Mathematica
    polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
    P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m + 1) n - k, n - k] (1 - x)^k x^(n - k), {k, 0, n}]/(m n + 1);
    T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
    T[3] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
  • PARI
    N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);
    T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));
    T(3) /* Lars Blomberg, Jul 17 2017 */

Formula

From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(4*n+1-k,n-k) * binomial(3*n,k-1) / n.
More generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n where m = 3.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)
Sum_{k = 1..n} (-1)^(k+1)*T(n,k)*binomial(x + 4*n - k + 1, 4*n - k + 1) = (x + 1) * ( Product_{k = 2..n} (x + k)^2 ) * ( Product_{k = 1..2*n+1} (x + n + k) ) / (n!*(3*n + 1)!) for n >= 1. Cf. A126216 and A243660. - Peter Bala, Oct 08 2022

Extensions

a(22)-a(39) from Lars Blomberg, Jul 12 2017

A269730 Dimensions of the 2-polytridendriform operad TDendr_2.

Original entry on oeis.org

1, 5, 31, 215, 1597, 12425, 99955, 824675, 6939769, 59334605, 513972967, 4501041935, 39784038517, 354455513105, 3179928556219, 28701561707675, 260447708523505, 2374690737067925, 21744508765633327, 199877846477679815, 1843718766426242221, 17060955558786455705, 158333204443000060291
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - 5*x - Sqrt[1 - 10*x + x^2])/(12*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
    Table[-I*LegendreP[n, -1, 2, 5]/Sqrt[6], {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
  • PARI
    A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
    dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
    my(q=2); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
    
  • PARI
    my(q=2, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017

Formula

a(n) = P_n(2), where P_n(x) is the polynomial associated with row n of triangle A126216 in order of decreasing powers of x.
Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ sqrt(12 + 5*sqrt(6)) * (5 + 2*sqrt(6))^n / (12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2016
A(x) = -serreverse(A001047(x))(-x). - Gheorghe Coserea, Sep 30 2017
From Peter Bala, Dec 25 2020: (Start)
a(n) = (1/(2*m*(m+1))) * Integral_{x = 1..2*m+1} Legendre_P(n,x) dx at m = 2.
a(n) = (1/(2*n+1)) * (1/(2*m*(m+1))) * ( Legendre_P(n+1,2*m+1) - Legendre_P(n-1,2*m+1) ) at m = 2. (End)
G.f. A(x) = x*exp( Sum_{n >= 1} A006442(n)*x^n/n ). - Peter Bala, Jan 09 2022

Extensions

More terms from Gheorghe Coserea, Apr 23 2016

A269731 Dimensions of the 3-polytridendriform operad TDendr_3.

Original entry on oeis.org

1, 7, 61, 595, 6217, 68047, 770149, 8939707, 105843409, 1273241431, 15517824973, 191202877411, 2377843390873, 29807864423071, 376255282112629, 4778240359795147, 61007205215610529, 782648075371992487, 10083436451634033757, 130413832663780730995, 1692599303723819234281, 22037570163808433691247, 287762084009227350367621
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,7]; [n le 2 select I[n] else (7*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
  • Mathematica
    Rest[CoefficientList[Series[(1 - 7*x - Sqrt[1 - 14*x + x^2])/(24*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
    Table[-I*LegendreP[n, -1, 2, 7]/(2*Sqrt[3]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 7, (n + 1) a[n] == 7 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
  • PARI
    A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
    dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
    my(q=3); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
    
  • PARI
    my(q=3, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
    

Formula

a(n) = P_n(3), where P_n(x) is the polynomial associated with row n of triangle A126216 in order of decreasing powers of x.
Recurrence: (n+1)*a(n) = 7*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ sqrt(24 + 14*sqrt(3)) * (7 + 4*sqrt(3))^n / (24*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2016
A(x) = -serreverse(A005061(x))(-x). - Gheorghe Coserea, Sep 30 2017
From Peter Bala, Dec 25 2020: (Start)
a(n) = (1/(2*m*(m+1))) * Integral_{x = 1..2*m+1} Legendre_P(n,x) dx at m = 3.
a(n) = (1/(2*n+1)) * (1/(2*m*(m+1))) * ( Legendre_P(n+1,2*m+1) - Legendre_P(n-1,2*m+1) ) at m = 3. (End)

Extensions

More terms from Gheorghe Coserea, Apr 23 2016

A079508 Triangle T(n,k) (n >= 2, k >= 1) of Raney numbers read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 5, 1, 0, 0, 5, 9, 1, 0, 0, 0, 21, 14, 1, 0, 0, 0, 14, 56, 20, 1, 0, 0, 0, 0, 84, 120, 27, 1, 0, 0, 0, 0, 42, 300, 225, 35, 1, 0, 0, 0, 0, 0, 330, 825, 385, 44, 1, 0, 0, 0, 0, 0, 132, 1485, 1925, 616, 54, 1, 0, 0, 0, 0, 0, 0, 1287, 5005, 4004, 936, 65, 1
Offset: 2

Views

Author

N. J. A. Sloane, Jan 21 2003

Keywords

Comments

There are only m nonzero entries in the m-th column.
Related to A033282: shift row n of A033282 triangle n places to the right and transpose the resulting table. - Michel Marcus, Feb 04 2014

Examples

			From _Michel Marcus_, Feb 04 2014: (Start)
Triangle starts:
  1;
  0, 1;
  0, 2, 1;
  0, 0, 5,  1;
  0, 0, 5,  9,  1;
  0, 0, 0, 21, 14,   1;
  0, 0, 0, 14, 56,  20,    1;
  0, 0, 0,  0, 84, 120,   27,    1;
  0, 0, 0,  0, 42, 300,  225,   35,   1;
  0, 0, 0,  0,  0, 330,  825,  385,  44,  1;
  0, 0, 0,  0,  0, 132, 1485, 1925, 616, 54, 1;
  ... (End)
		

Crossrefs

Row sums give A005043.
Column sums give A001003.
Alternating sum of each column is 1.
Second diagonal on right gives A000096.
Central terms give A000108.
Cf. A033282, A126216 (transposed variants).

Programs

  • GAP
    Flat(List([1..10], n->List([1..n-1], k-> Binomial(k,n-k)*Binomial(n ,k+1)/k ))); # G. C. Greubel, Jan 17 2019
  • Magma
    [[Binomial(k,n-k)*Binomial(n,k+1)/k: k in [1..n-1]]: n in [2..10]]; // G. C. Greubel, Jan 17 2019
    
  • Mathematica
    Table[Binomial[k, n-k]*Binomial[n, k+1]/k, {n,2,10}, {k,1,n-1}]//Flatten (* G. C. Greubel, Jan 17 2019 *)
  • PARI
    tabl(nn) = {for (n = 2, nn, for (k = 1, n-1, print1(binomial(k, n-k)*binomial(n, k+1)/k, ", ");); print(););} \\ Michel Marcus, Feb 04 2014
    
  • Sage
    [[binomial(k,n-k)*binomial(n,k+1)/k for k in (1..n-1)] for n in (2..10)] # G. C. Greubel, Jan 17 2019
    

Formula

T(n,k) = binomial(k, n-k) * binomial(n, k+1)/k. - Michel Marcus, Feb 04 2014
From Andrew Howroyd, Jan 24 2025: (Start)
T(n,k) = A033282(k + 2, n - k - 1) = A126216(k, 2*k - n).
G.f.: -1 + ((1 + y*x) - sqrt(1 - 2*y*x + (y^2 - 4*y)*x^2))/(2*x*y*(1 + x)).
G.f.: -1 + (1/(x*y))*Series_Reversion(x*(1 - x)/(y - y*x + x^2)). (End)

Extensions

Corrected and extended by Michel Marcus, Feb 04 2014
Previous Showing 11-17 of 17 results.