A231814 Squarefree numbers (from A005117) with prime divisors in a 2p-1 progression.
6, 15, 30, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 51319, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381, 1755001, 1869211
Offset: 1
Keywords
Examples
51319 = 19*37*73 where 37 = 2*19 - 1, 73 = 2*37 - 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^7: # for terms <= N p:= 1: S:= NULL: count:= 0: do p:= nextprime(p); if p*(2*p-1) > N then break fi; q:= p; x:= p; do q:= 2*q-1; if not isprime(q) then break fi; x:= x*q; if x > N then break fi; S:= S,x; count:= count+1; od; od: sort([S]); # Robert Israel, Mar 24 2023
-
Mathematica
geomQ[lst_] := Module[{x = lst - 1}, x = x/x[[1]]; Log[2, x] + 1 == Range[Length[x]]]; Select[Range[2, 1000000], ! PrimeQ[#] && SquareFreeQ[#] && geomQ[Transpose[FactorInteger[#]][[1]]] &] (* T. D. Noe, Nov 14 2013 *)
Comments