cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A130240 Partial sums of A130239.

Original entry on oeis.org

0, 2, 4, 6, 9, 12, 15, 18, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A130239(k).
a(n) = (n+1)*A130233(sqrt(n)) - Fib(A130233(sqrt(n)) + 1) * Fib(A130232(sqrt(n))).
G.f.: (1/(1-x)^2) * Sum_{k>=1} x^(Fib(k)^2).

A130253 Number of Jacobsthal numbers (A001045) <=n.

Original entry on oeis.org

1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Hieronymus Fischer, May 20 2007

Keywords

Comments

Partial sums of the Jacobsthal indicator sequence (A105348).
For n<>1, we have a(A001045(n))=n+1.

Examples

			a(9)=5 because there are 5 Jacobsthal numbers <=9 (0,1,1,3 and 5).
		

Crossrefs

For partial sums see A130252. Other related sequences A001045, A130249, A130250, A130253, A105348. Also A130233, A130235, A130241, A108852, A130245.

Programs

Formula

a(n) = floor(log_2(3n+1)) + 1 = ceiling(log_2(3n+2)).
a(n) = A130249(n) + 1 = A130250(n+1).
G.f.: 1/(1-x)*(Sum_{k>=0} x^A001045(k)).

A130236 Partial sums of the 'upper' Fibonacci Inverse A130234.

Original entry on oeis.org

0, 1, 4, 8, 13, 18, 24, 30, 36, 43, 50, 57, 64, 71, 79, 87, 95, 103, 111, 119, 127, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 422, 432, 442, 452, 462, 473
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Crossrefs

Programs

  • Magma
    m:=120;
    f:= func< x | x*(&+[x^Fibonacci(j): j in [0..Floor(3*Log(3*m+1))]])/(1-x)^2 >;
    R:=PowerSeriesRing(Rationals(), m+1);
    [0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    b[n_]:= For[i=0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
    b/@ Range[0, 56]//Accumulate (* Jean-François Alcover, Apr 13 2020 *)
  • SageMath
    m=120
    def f(x): return x*sum( x^fibonacci(j) for j in range(1+int(3*log(3*m+1))))/(1-x)^2
    def A130236_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A130236_list(m) # G. C. Greubel, Mar 18 2023

Formula

a(n) = Sum_{k=0..n} A130234(k).
a(n) = n*A130234(n) - Fibonacci(A130234(n)+1) + 1.
G.f.: (x/(1-x)^2) * Sum_{k>=0} x^Fibonacci(k).

A007298 Sums of consecutive Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 18, 19, 20, 21, 26, 29, 31, 32, 33, 34, 42, 47, 50, 52, 53, 54, 55, 68, 76, 81, 84, 86, 87, 88, 89, 110, 123, 131, 136, 139, 141, 142, 143, 144, 178, 199, 212, 220, 225, 228, 230, 231, 232, 233, 288, 322
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2000

Keywords

Comments

Also the differences between two Fibonacci numbers, because the difference F(i+2) - F(j+1) equals the sum F(j) + ... + F(i). - T. D. Noe, Oct 17 2005; corrected by Patrick Capelle, Mar 01 2008

Crossrefs

Cf. A113188 (primes that are the difference of two Fibonacci numbers).
Cf. A219114 (numbers whose squares are here).

Programs

  • Maple
    isA007298 := proc(n)
        local i,Fi,j,Fj ;
        for i from 0 do
            Fi := combinat[fibonacci](i) ;
            for j from i do
                Fj :=combinat[fibonacci](j) ;
                if Fj-Fi = n then
                    return true;
                elif Fj-Fi > n then
                    break;
                end if;
            end do:
            Fj :=combinat[fibonacci](i+1) ;
            if Fj-Fi > n then
                return false;
            end if;
        end do:
    end proc:
    for n from 0 to 100 do
        if isA007298(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 25 2016
  • Mathematica
    Union[Flatten[Table[Fibonacci[n]-Fibonacci[i], {n, 14}, {i, n}]]] (* T. D. Noe, Oct 17 2005 *)
    isA007298[n_] := Module[{i, Fi, j, Fj}, For[i = 0, True, i++, Fi = Fibonacci[i]; For[j = i, True, j++, Fj = Fibonacci[j]; Which[Fj - Fi == n, Return@True, Fj - Fi > n, Break[]]]; Fj := Fibonacci[i + 1]; If[Fj - Fi > n, Return@False]]];
    Select[Range[0, 1000], isA007298] (* Jean-François Alcover, Nov 16 2023, after R. J. Mathar *)
  • PARI
    A130233(n)=log(sqrt(5)*n+1.5)\log((1+sqrt(5))/2)
    list(lim)=my(v=List([0]),F=vector(A130233(lim),i,fibonacci(i)),s,t); for(i=1,#F, s=0; forstep(j=i,1,-1, s+=F[j]; if(s>lim, break); listput(v,s))); Set(v) \\ Charles R Greathouse IV, Oct 06 2016

Formula

log a(n) >> sqrt(n). - Charles R Greathouse IV, Oct 06 2016

A130255 Maximal index k of an odd Fibonacci number (A001519) such that A001519(k) = Fibonacci(2k-1) <= n (the 'lower' odd Fibonacci Inverse).

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Hieronymus Fischer, May 24 2007, Jul 02 2007

Keywords

Comments

Inverse of the odd Fibonacci sequence (A001519), nearly, since a(A001519(n))=n except for n=0 (see A130256 for another version). a(n)+1 is the number of odd Fibonacci numbers (A001519) <= n (for n >= 1).

Examples

			a(10)=3 because A001519(3) = 5 <= 10, but A001519(4) = 13 > 10.
		

Crossrefs

Cf. partial sums A130257. Other related sequences: A000045, A130233, A130237, A130239, A130256, A130259, A104160. Lucas inverse: A130241 - A130248.

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Floor((1 +Argsinh(Sqrt(5)*n/2)/Log(phi))/2): n in [1..100]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    Table[Floor[(1 +ArcSinh[Sqrt[5]*n/2]/Log[GoldenRatio])/2], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    phi=(1+sqrt(5))/2; vector(100, n, floor((1 +asinh(sqrt(5)*n/2)/log(phi))/2)) \\ G. C. Greubel, Sep 09 2018
    

Formula

a(n) = floor((1 + arcsinh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + arccosh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + log_phi(sqrt(5)*n))/2) for n >= 1, where phi = (1 + sqrt(5))/2.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^Fibonacci(2k-1).
a(n) = floor((1/2)*(1 + log_phi(sqrt(5)*n + 1))) for n >= 1.

A130257 Partial sums of the 'lower' odd Fibonacci Inverse A130255.

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250
Offset: 1

Views

Author

Hieronymus Fischer, May 24 2007

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Floor((1+Argsinh(Sqrt(5)*k/2)/Log((1+Sqrt(5))/2))/2): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    Table[Sum[Floor[(1 + ArcSinh[Sqrt[5]*k/2]/Log[GoldenRatio])/2], {k, 1, n}], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    for(n=1,100, print1(sum(k=1,n, floor((1+asinh(sqrt(5)*k/2)/log((1+sqrt(5))/2))/2)), ", ")) \\ G. C. Greubel, Sep 09 2018
    

Formula

a(n) = (n+1)*A130255(n) - A001906(A130255(n)).
a(n) = (n+1)*A130255(n) - Fib(2*A130255(n)).
G.f.: g(x)=1/(1-x)^2*sum(k>=1, x^Fib(2k-1)).

A087172 Greatest Fibonacci number that does not exceed n.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55
Offset: 1

Views

Author

Sam Alexander, Oct 19 2003

Keywords

Comments

Also the largest term in Zeckendorf representation of n; starting at Fibonacci positions the sequence is repeated again and again in A107017: A107017(A000045(n)+k) = a(k) with 0 < k < A000045(n-1). - Reinhard Zumkeller, May 09 2005
Fibonacci(n) occurs Fibonacci(n-1) times, for n >= 2. - Benoit Cloitre, Dec 15 2022

Crossrefs

Programs

  • Haskell
    a087172 = head . a035516_row -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    with(combinat):
    A087172 := proc (n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc:
    seq(A087172(n), n = 1 .. 40); # Emeric Deutsch, Nov 11 2014
    # Alternative
    N:= 100: # to get a(n) for n from 1 to N
    Fibs:= [seq(combinat:-fibonacci(i), i = 1 .. ceil(log[(1 + sqrt(5))/2](sqrt(5)*N)))]:
    A:= Vector(N):
    for i from 1 to nops(Fibs)-1 do
      A[Fibs[i] .. min(N,Fibs[i+1]-1)]:= Fibs[i]
    od:
    convert(A,list); # Robert Israel, Nov 11 2014
  • Mathematica
    With[{rf=Reverse[Fibonacci[Range[10]]]},Flatten[Table[ Select[ rf,n>=#&, 1],{n,80}]]] (* Harvey P. Dale, Dec 08 2012 *)
    Flatten[Map[ConstantArray[Fibonacci[#],Fibonacci[#-1]]&,Range[15]]] (* Peter J. C. Moses, May 02 2022 *)
  • PARI
    a(n)=my(k=log(n)\log((1+sqrt(5))/2)); while(fibonacci(k)<=n, k++); fibonacci(k--) \\ Charles R Greathouse IV, Jul 24 2012
    

Formula

a(n) = Fibonacci(A130233(n)) = Fibonacci(A130234(n+1)-1). - Hieronymus Fischer, May 28 2007
a(n) = A035516(n, 0) = A035517(n, A007895(n)-1). - Reinhard Zumkeller, Mar 10 2013
a(n) = n - A066628(n). - Michel Marcus, Feb 02 2016
Sum_{n>=1} 1/a(n)^2 = Sum_{n>=1} Fibonacci(n)/Fibonacci(n+1)^2 = 1.7947486789... . - Amiram Eldar, Aug 16 2022

A130243 Partial sums of the 'lower' Lucas Inverse A130241.

Original entry on oeis.org

1, 2, 4, 7, 10, 13, 17, 21, 25, 29, 34, 39, 44, 49, 54, 59, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352
Offset: 1

Views

Author

Hieronymus Fischer, May 19 2007

Keywords

Crossrefs

Other related sequences: A000032, A130244, A130242, A130245, A130246, A130248, A130251, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Magma
    [1 + (&+[Floor(Log(k+1/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 13 2018
  • Mathematica
    Table[1 + Sum[Floor[Log[GoldenRatio, k + 1/2]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Sep 13 2018 *)
  • PARI
    for(n=1,50, print1(1 + sum(k=1,n,floor(log(k+1/2)/log((1+sqrt(5))/2))), ", ")) \\ G. C. Greubel, Sep 13 2018
    

Formula

a(n) = Sum_{k=1..n} A130241(k).
a(n) = (n+1)*A130241(n) - A000032(A130241(n)+2) + 3.
G.f.: g(x) = 1/(1-x)^2*Sum_{k>=1} x^Lucas(k).

A130246 Partial sums of A130245.

Original entry on oeis.org

0, 1, 3, 6, 10, 14, 18, 23, 28, 33, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007

Keywords

Crossrefs

Other related sequences: A000032, A130241, A130243, A130244, A130248, A130251, A130252, A130255, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Magma
    [0] cat [(&+[1+Floor(Log((2*k+1)/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    Table[Sum[1 + Floor[Log[GoldenRatio, (2*k + 1)/2]], {k, 1, n}], {n, 0, 100}] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    for(n=0, 100, print1(sum(k=1,n, 1 + floor(log((2*k+1)/2)/log((1+sqrt(5))/2))), ", ")) \\ G. C. Greubel, Sep 09 2018
    

Formula

a(n) = Sum_{k=1..n} A130245(k).
a(n) = 1 +(n+1)*A130245(n) - A000032(A130245(n)+1) for n=0 or n >= 2.
G.f.: 1/(1-x)^2*Sum_{k>=0} x^A000032(k).

A130251 Partial sums of A130249.

Original entry on oeis.org

0, 2, 4, 7, 10, 14, 18, 22, 26, 30, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321
Offset: 0

Views

Author

Hieronymus Fischer, May 20 2007

Keywords

Examples

			G.f. = 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 18*x^6 + 22*x^7 + ... - _Michael Somos_, Sep 17 2018
		

Crossrefs

Programs

  • Magma
    [0] cat [(&+[Floor(Log(3*k+1)/Log(2)) : k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
    
  • Mathematica
    Join[{0}, Table[Sum[Floor[Log[2, 3*k + 1]], {k, 1, n}], {n, 1, 2500}]] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    for(n=0,100, print1(sum(k=1,n, floor(log(3*k+1)/log(2))), ", ")) \\ G. C. Greubel, Sep 09 2018
    
  • Python
    def A130251(n): return (n+1)*((m:=(3*n+1).bit_length())-1)-(((1<>1) # Chai Wah Wu, Apr 17 2025

Formula

a(n) = Sum_{k=0..n} A130249(k).
a(n) = (n+1)*floor(log_2(3*n+1)) - (1/2)*(A001045(floor(log_2(3*n+1))+2)-1).
G.f.: (1/(1-x)^2)*Sum_{k>=1} x^A001045(k).
Previous Showing 11-20 of 41 results. Next