cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A133114 A000012 * A007318 * A133080.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 3, 2, 7, 3, 1, 3, 3, 13, 7, 5, 1, 4, 3, 22, 13, 16, 5, 1, 4, 4, 34, 22, 40, 16, 7, 1, 5, 4, 50, 34, 86, 40, 29, 7, 1, 5, 5, 70, 50, 166, 86, 91, 29, 9, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 14 2007

Keywords

Comments

Row sums = 2^n

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 1, 1;
2, 2, 3, 1;
3, 2, 7, 3, 1;
3, 3, 13, 7, 5, 1;
4, 3, 22, 13, 16, 5, 1;
4, 4, 34, 22, 40, 16, 7, 1;
...
		

Crossrefs

Formula

A000012(signed) * A007318 * A133080 as infinite lower triangular matrices, where A000012(signed) = [1; -1,1; 1,-1,1; -1,1,-1,1;...).

A133571 (A007318 * A133080 + A133080 * A007318) - A007318.

Original entry on oeis.org

1, 3, 1, 3, 2, 1, 5, 5, 5, 1, 5, 4, 10, 4, 1, 7, 9, 26, 14, 7, 1, 7, 6, 35, 20, 21, 6, 1, 9, 13, 71, 55, 71, 27, 9, 1, 9, 8, 84, 56, 126, 56, 36, 8, 1, 11, 17, 148, 140, 322, 182, 14844, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2007

Keywords

Comments

Row sums = A133572: (1, 4, 6, 16, 24, 64, 96, 256, ...).

Examples

			First few rows of the triangle:
  1;
  3,  1;
  3,  2,  1;
  5,  5,  5,  1;
  5,  4, 10,  4,  1;
  7,  9, 26, 14,  7,  1;
  7,  6, 35, 20, 21,  6,  1;
  9, 13, 71, 55, 71, 27,  9,  1;
  ...
		

Crossrefs

Formula

(A007318 * A133080 + A133080 * A007318) - A007318, as infinite lower triangular matrices, where A133080 is an interpolation operator.

A133601 A007318 * (A097806 + A133080 - I), I = Identity matrix.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 6, 5, 1, 9, 10, 14, 5, 1, 11, 15, 30, 15, 7, 1, 13, 21, 55, 35, 27, 7, 1, 15, 28, 91, 70, 77, 28, 9, 1, 17, 36, 140, 126, 182, 84, 44, 9, 1, 19, 45, 204, 210, 378, 210, 156, 45, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 1;
5, 3, 1;
7, 6, 5, 1;
9, 10, 14, 5, 1;
11, 15, 30, 15, 7, 1;
13, 21, 55, 35, 27, 7, 1;
15, 28, 91, 70, 77, 28, 9, 1;
...
		

Crossrefs

Cf. A097806, A133080, A052549 (row sums).

Programs

Formula

A007318 * (A097806 + A133080 - I), I = Identity matrix. Binomial transform of an infinite lower triangular matrix with (1,1,1,...) in the main diagonal and (2,1,2,1,2,...) in the subdiagonal; and the rest zeros.

A133602 The matrix-vector product A133080 * A000108.

Original entry on oeis.org

1, 2, 2, 7, 14, 56, 132, 561, 1430, 6292, 16796, 75582, 208012, 950912, 2674440, 12369285, 35357670, 165002460, 477638700, 2244901890, 6564120420, 31030387440, 91482563640, 434542177290, 1289904147324, 6151850548776
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133603 is a companion sequence.

Examples

			a(4) = C(4) = 14.
a(5) = 56 = C(5) + C(4) = 42 + 14.
		

Crossrefs

Programs

  • Python
    from sympy import catalan
    def a005807(n): return catalan(n) + catalan(n + 1)
    def a048990(n): return catalan(2*n)
    l=[1, 2]
    for n in range(2, 31): l+=[a048990(n//2) if n%2==0 else a005807(n - 1)]
    print(l) # Indranil Ghosh, Jul 15 2017

Formula

A133080 * A000108, where A133080 = an infinite lower triangular matrix and A000108 = the Catalan sequence as a vector.
a(2n) = A048990(n).
a(2n+1) = A005807(2n).
Conjecture: n*(n-1)*(n-3)*(3*n-4)*a(n) -8*(n-1)*(2*n-5)*a(n-1) -4*(n-2)*(3*n-1)*(2*n-5)*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jun 20 2015

A133804 Triangle read by rows: A007318 * A133080 * A133566.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 14, 10, 5, 1, 6, 25, 20, 16, 6, 1, 7, 41, 35, 41, 21, 7, 1, 8, 63, 56, 91, 56, 29, 8, 1, 9, 92, 84, 182, 126, 92, 36, 9, 1, 10, 129, 120, 336, 252, 246, 120, 46, 10, 1, 11, 175, 165, 582, 462, 582, 330, 175, 55, 11, 1, 12, 231, 220, 957, 792, 1254, 792, 550, 220, 67, 12, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 23 2007

Keywords

Comments

Row sums = A133124: (1, 3, 7, 16, 35, 74, 153, ...).
A133805 = binomial transform of (A133566 * A133080).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  3,  1;
  4,  7,  4,  1;
  5, 14, 10,  5,  1;
  6, 25, 20, 16,  6,  1;
  7, 41, 35, 41, 21,  7,  1;
  ...
		

Crossrefs

Formula

Binomial transform of (A133080 * A133566), where A133080 * A133566 = an infinite lower triangular matrix with (1,1,1,...) in the main and subdiagonals and (0,1,0,1,0,...) in the subsubdiagonal.

Extensions

a(21) = 1 inserted and more terms from Georg Fischer, Jun 08 2023

A133938 A007318 * (A129686 + A133080 - I), where I is the identity matrix.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 4, 4, 1, 11, 8, 11, 4, 1, 16, 15, 25, 11, 6, 1, 22, 26, 50, 26, 22, 6, 1, 29, 42, 91, 56, 63, 22, 8, 1, 37, 64, 154, 112, 154, 64, 37, 8, 1, 46, 93, 24, 210, 336, 162, 129, 37, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 29 2007

Keywords

Comments

Left column = A000124: (1, 2, 4, 7, 11, ...).
Row sums = A133124: (1, 3, 7, 16, 35, 74, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  2,  1;
   7,  4,  4,  1;
  11,  8, 11,  4,  1;
  16, 15, 25, 11,  6,  1;
  22, 26, 50, 26, 22,  6,  1;
  ...
		

Crossrefs

Formula

Binomial transform of matrix M, where M = a tridiagonal matrix with (1,1,1,...) in the main diagonal, (1,0,1,0,...) in the subdiagonal and (1,1,1,...) in the subsubdiagonal. M = (A129686 + A133080 - I), I = Identity matrix.

A133088 A007318^(-1) * A133080.

Original entry on oeis.org

1, 0, 1, -1, -2, 1, 2, 3, -2, 1, -3, -4, 2, -4, 1, 4, 5, 0, 10, -4, 1, -5, -6, -5, -20, 9, -6, 1, 6, 7, 14, 35, -14, 21, -6, 1, -7, -8, -28, -56, 14, -56, 20, -8, 1, 8, 9, 48, 84, 0, 126, -48, 36, -8, 1, -9, -10, -75, -120, -42, -252, 90, -120, 35, -10, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums give A123344.
Inverse binomial transform of A133080.

Examples

			First few rows of the triangle:
   1;
   0,   1;
  -1,  -2,   1;
   2,   3,  -2,   1;
  -3,  -4,   2,  -4,   1;
   4,   5,   0,  10,  -4,   1;
  -5,  -6,  -5, -20,   9,  -6,   1;
  ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {t007318 = matrix(nn, nn, n, k, binomial(n-1, k-1)); t133080 = matrix(nn, nn, n, k, if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0))); t133088 = t007318^(-1)*t133080; for (n = 1, nn, for (k = 1, n, print1(t133088[n, k], ", ");); print(););} \\ Michel Marcus, Feb 13 2014

Extensions

Typo corrected by Travis Hoppe, Apr 24 2008
One term's sign corrected by Michel Marcus, Feb 13 2014

A093178 If n is even then 1, otherwise n.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1, 21, 1, 23, 1, 25, 1, 27, 1, 29, 1, 31, 1, 33, 1, 35, 1, 37, 1, 39, 1, 41, 1, 43, 1, 45, 1, 47, 1, 49, 1, 51, 1, 53, 1, 55, 1, 57, 1, 59, 1, 61, 1, 63, 1, 65, 1, 67, 1, 69, 1, 71, 1, 73, 1, 75, 1, 77, 1, 79, 1, 81, 1, 83, 1, 85
Offset: 0

Views

Author

Michael Somos, Mar 27 2004

Keywords

Comments

Continued fraction expansion for tan(1).
1 followed by run lengths of A062557 = 2n-1 1's followed by a 2. - Jeremy Gardiner, Aug 12 2012
Greatest common divisor of n and (n+1) mod 2. - Bruno Berselli, Mar 07 2017

Examples

			1.557407724654902230506974807... = 1 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...))))
G.f. = 1 + x + x^2 + 3*x^3 + x^4 + 5*x^5 + x^6 + 7*x^7 + x^8 + 9*x^9 + x^10 + ...
		

Crossrefs

Equals |A009001(n)|.
Cf. A133080, A049471 (decimal expansion), A009001, A161738, A062557, A124625.

Programs

  • Maple
    A093178:=n->(n+1+(1-n)*(-1)^n)/2; seq(A093178(k), k=0..100); # Wesley Ivan Hurt, Oct 19 2013
  • Mathematica
    Join[{1},Riffle[Range[1,85,2],1]] (* or *) Array[If[EvenQ[#],1,#]&,87,0] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    {a(n) = if( n%2, n, 1)};

Formula

G.f.: (1+x-x^2+x^3)/(1-x^2)^2.
a(n) = (-1)^n * a(-n) for all n in Z.
a(n) = (1/2) * [ 1 + n + (1-n)*(-1)^n ]. - Ralf Stephan, Dec 02 2004
a(n) = n^n mod (n+1) for n > 0. - Amarnath Murthy, Apr 18 2004
Satisfies a(0) = 1, a(n+1) = a(n) + n if a(n) < n else a(n+1) = a(n)/n. - Amarnath Murthy, Oct 29 2002
a(n) = ((n+1)+(1-n)(-1)^n)/2 and have e.g.f. (1+x)cosh(x). - Paul Barry, Apr 09 2003
a(n) = binomial(n, 2*floor(n/2)). - Paul Barry, Dec 28 2006
Starting (1, 1, 3, 1, 5, 1, 7, ...) = A133080^(-1) * [1,2,3,...]. - Gary W. Adamson, Sep 08 2007
a(n) = denom(b(n+2)/b(n+1)) with b(n) = product((2*n-3-2*k), k=0..floor(n/2-1)). - Johannes W. Meijer, Jun 18 2009
a(n) = 2*floor(n/2) - n*(n-1 mod 2) + 1. - Wesley Ivan Hurt, Oct 19 2013
a(n) = n^(n mod 2). - Wesley Ivan Hurt, Apr 16 2014

A084221 a(n+2) = 4*a(n), with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888
Offset: 0

Views

Author

Paul Barry, May 21 2003

Keywords

Comments

Binomial transform is A060925. Binomial transform of A084222.
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007

Examples

			Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - _Philippe Deléham_, Mar 21 2014
		

Crossrefs

For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5).
Other related sequences: A132666, A132667, A132668, A132669.

Programs

Formula

a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n) = A133628(n) - A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * [1, 2, 4, 8, ...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014

Extensions

Edited by N. J. A. Sloane, Dec 14 2007

A133566 Triangle read by rows: (1,1,1,...) on the main diagonal and (0,1,0,1,...) on the subdiagonal.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2007

Keywords

Comments

Usually regarded as a square matrix T when combined with other matrices and column vectors.
Then T * V, where V = any sequence regarded as a column vector with offset 1 is a new sequence S [called an interpolation transform] given by S(2n) = V(2n), S(2n-1) = V(2n) + V(2n-1). Example: If T * [1,2,3,...], S = [1, 2, 5, 4, 9, 6, 13, 8, 17, ...) = A114752. A133080 is identical to A133566 except that the subdiagonal = (1,0,1,0,...). A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, 9, 19, ...).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,-1,0,0,0,0,0,0,...] DELTA [1,0,-2,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2007

Examples

			First few rows of the triangle:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 0, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A133566 := proc(n,k)
        if n = k then
            1;
        elif  k=n-1 and type(n,odd) then
            1;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    T[n_, k_] := Which[n == k, 1, k == n - 1 && OddQ[n], 1, True, 0];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 24 2023 *)

Formula

Odd rows: (n-2) zeros followed by 1, 1. Even rows: (n-1) zeros followed by 1.
Sum_{k=0..n} T(n,k) = A040001(n). - Philippe Deléham, Dec 15 2007
G.f.: (-1-x*y-x^2*y)*x*y/((-1+x*y)*(1+x*y)). - R. J. Mathar, Aug 11 2015

Extensions

Entry revised by N. J. A. Sloane, Jun 20 2015
Previous Showing 11-20 of 28 results. Next