A130404 Partial sums of A093178.
1, 2, 3, 6, 7, 12, 13, 20, 21, 30, 31, 42, 43, 56, 57, 72, 73, 90, 91, 110, 111, 132, 133, 156, 157, 182, 183, 210, 211, 240, 241, 272, 273, 306, 307, 342, 343, 380, 381, 420, 421, 462, 463, 506, 507, 552, 553, 600, 601, 650, 651, 702, 703, 756, 757, 812, 813
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
&cat[ [ n^2-n+1, n*(n+1) ]: n in [1..29] ];
-
Mathematica
Table[If[EvenQ[n], 1, n], {n, 0, 56}] // Accumulate (* Jean-François Alcover, Jun 10 2013 *) Accumulate[Join[{1},Riffle[Range[1,85,2],1]]] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{1,2,3,6,7},90] (* Harvey P. Dale, Jun 01 2016 *)
-
PARI
{s=0; for(n=1, 57, s=s+if(n%2>0, 1, n-1); print1(s, ","))}
-
PARI
{for(n=1, 57, print1(if(n%2>0, (n^2+3)/4, (n^2+2*n)/4), ","))}
Formula
a(1) = 1; for n > 1, a(n) = a(n-1)+1 if n is odd, a(n) = a(n-1)+(n-1) if n is even.
G.f.: x*(1+x-x^2+x^3)/((1-x)^3*(1+x)^2).
a(1) = 1; a(n) = a(n-1) + n^(n mod 2) = (1/4)*(n^2 + 2n + 4 + (n mod 2)*(2n-1)). - Rolf Pleisch, Feb 04 2008
a(n) = (2*(n-1)*(n+2) + (2*n-3)*(-1)^n+7)/8. - Bruno Berselli, Mar 31 2011
Comments