cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A358135 Difference of first and last parts of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 0, 0, -1, 1, 0, 0, -2, 0, -1, 2, 0, 1, 0, 0, -3, -1, -2, 1, -1, 0, -1, 3, 0, 1, 0, 2, 0, 1, 0, 0, -4, -2, -3, 0, -2, -1, -2, 2, -1, 0, -1, 1, -1, 0, -1, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, -5, -3, -4, -1, -3, -2, -3, 1, -2, -1, -2, 0, -2
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Crossrefs

See link for sequences related to standard compositions.
The first and last parts are A065120 and A001511.
This is the first minus last part of row n of A066099.
The version for Heinz numbers of partitions is A243055.
Row sums of A358133.
The partial sums of standard compositions are A358134, adjusted A242628.
A011782 counts compositions.
A333766 and A333768 give max and min in standard compositions, diff A358138.
A351014 counts distinct runs in standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[-First[stc[n]]+Last[stc[n]],{n,1,100}]

Formula

a(n) = A001511(n) - A065120(n).

A358907 Number of finite sequences of distinct integer compositions with total sum n.

Original entry on oeis.org

1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 18 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((12))     ((13))
                 ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((112))
                 ((2)(1))   ((121))
                 ((1)(11))  ((211))
                 ((11)(1))  ((1111))
                            ((1)(3))
                            ((3)(1))
                            ((1)(12))
                            ((11)(2))
                            ((1)(21))
                            ((12)(1))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

For sets instead of sequences we have A098407, partitions A261049.
This is the strict case of A133494.
The case of distinct sums is A336127, constant sums A074854.
The version for sequences of partitions is A358906.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Maple
    g:= proc(n) option remember; ceil(2^(n-1)) end:
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
          add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 15 2022
  • Mathematica
    comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
    Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]

Extensions

a(16)-a(29) from Alois P. Heinz, Dec 15 2022

A065178 Number of site swap patterns with 2 balls and exact period n.

Original entry on oeis.org

1, 2, 6, 15, 42, 107, 294, 780, 2128, 5781, 15918, 43885, 122010, 340323, 954394, 2685930, 7588770, 21507696, 61144062, 174283887, 498012094, 1426213191, 4092816966, 11767176070, 33890202192, 97761428205, 282424564744
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

When interspersed with 0's, exponents in expansion of A065481 as a product zeta(n)^(-a(n)).

Examples

			We have one period 1 (2), two period 2 (31/13 and 40/04) and six period three 2-ball siteswaps (312, 330, 411, 420, 501, 600) (The average of the digits is always 2).
		

Crossrefs

Programs

  • Maple
    [seq(DistSS(p,2),p=1..60)];
    A065178 := proc(n)
        add( mobius(n/d)*(3^d-2^d),d=numtheory[divisors](n)) /n ;
    end proc:
    seq(A065178(n),n=1..30) ; # R. J. Mathar, Aug 05 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * (3^#-2^#)&] / n; Array[a, 30] (* Jean-François Alcover, Mar 05 2016, after R. J. Mathar *)

Formula

a(n) ~ 3^n/n. - Vaclav Kotesovec, Mar 05 2016
Inverse Euler transform of A133494. - Alois P. Heinz, Jun 23 2018
G.f.: Sum_{k>=1} mu(k) * log(1 + x^k/(1 - 3*x^k))/k. - Seiichi Manyama, Apr 14 2025

A336343 Number of ways to choose a strict partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2020

Keywords

Comments

A strict composition of n (A032020) is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(5) = 11 ways:
  (1)  (2)  (3)      (4)        (5)
            (2,1)    (3,1)      (3,2)
            (1),(2)  (1),(3)    (4,1)
            (2),(1)  (3),(1)    (1),(4)
                     (1),(2,1)  (2),(3)
                     (2,1),(1)  (3),(2)
                                (4),(1)
                                (1),(3,1)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of strict partitions are A072706.
Set partitions of strict partitions are A294617.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
  • PARI
    \\ here Q(N) gives A000009 as a vector.
    Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
    seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000009(j)). - Andrew Howroyd, Apr 16 2021

A357187 First differences A357186 = "Take the k-th composition in standard order for each part k of the n-th composition in standard order, then add up everything.".

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 1, 0, -1, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -3, 1, 1, 0, 0, 1, 0, 0, -1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

Are there any terms > 1?
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			We have A357186(5) - A357186(4) = 3 - 2 = 1, so a(4) = 1.
		

Crossrefs

See link for sequences related to standard compositions.
Positions of first appearances appear to all belong to A052955.
Differences of A357186 (row-sums of A357135).
The version for partitions is A357458, differences of A325033.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Differences[Table[stc/@stc[n]/.List->Plus,{n,0,100}]]

Formula

a(n) = A357186(n + 1) - A357186(n).

A358133 Triangle read by rows whose n-th row lists the first differences of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

0, -1, 1, 0, 0, -2, 0, -1, 0, 2, 1, -1, 0, 1, 0, 0, 0, -3, -1, -2, 0, 1, 0, -1, -1, 1, -1, 0, 0, 3, 2, -2, 1, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0, -4, -2, -3, 0, 0, -1, -1, -2, 1, -2, 0, 0, 2, 1, -2, 0, 0, 0, -1, 0, -1, 2, -1, 1, -1, -1, 0, 1, -1
Offset: 3

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins (dots indicate empty rows):
   1:   .
   2:   .
   3:   0
   4:   .
   5:  -1
   6:   1
   7:   0  0
   8:   .
   9:  -2
  10:   0
  11:  -1  0
  12:   2
  13:   1 -1
  14:   0  1
  15:   0  0  0
		

Crossrefs

See link for sequences related to standard compositions.
First differences of rows of A066099.
The version for Heinz numbers of partitions is A355536, ranked by A253566.
The partial sums instead of first differences are A358134.
Row sums are A358135.
A011782 counts compositions.
A351014 counts distinct runs in standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Differences[stc[n]],{n,100}]

A336141 Number of ways to choose a strict composition of each part of an integer partition of n.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 41, 71, 138, 270, 518, 938, 1863, 3323, 6163, 11436, 20883, 37413, 69257, 122784, 221873, 397258, 708142, 1249955, 2236499, 3917628, 6909676, 12130972, 21251742, 36973609, 64788378, 112103360, 194628113, 336713377, 581527210, 1000153063
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 ways:
  (1)  (2)      (3)          (4)              (5)
       (1),(1)  (1,2)        (1,3)            (1,4)
                (2,1)        (3,1)            (2,3)
                (2),(1)      (2),(2)          (3,2)
                (1),(1),(1)  (3),(1)          (4,1)
                             (1,2),(1)        (3),(2)
                             (2,1),(1)        (4),(1)
                             (2),(1),(1)      (1,2),(2)
                             (1),(1),(1),(1)  (1,3),(1)
                                              (2,1),(2)
                                              (3,1),(1)
                                              (2),(2),(1)
                                              (3),(1),(1)
                                              (1,2),(1),(1)
                                              (2,1),(1),(1)
                                              (2),(1),(1),(1)
                                              (1),(1),(1),(1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
    seq(a(n), n=0..38);  # Alois P. Heinz, Jul 31 2020
  • Mathematica
    Table[Length[Join@@Table[Tuples[Join@@Permutations/@Select[IntegerPartitions[#],UnsameQ@@#&]&/@ctn],{ctn,IntegerPartitions[n]}]],{n,0,10}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
         If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
    g[n_, i_] := g[n, i] = If[n==0 || i==1, 1, g[n, i-1] +
         b[i, i, 0] g[n-i, Min[n-i, i]]];
    a[n_] := g[n, n];
    a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

G.f.: Product_{k >= 1} 1/(1 - A032020(k)*x^k).

A355388 Number of composable pairs (y, v) of integer compositions of n, where a composition is regarded as an arrow from the number of parts to the number of distinct parts.

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 174, 536, 1656, 4947, 14800, 43157, 126572, 364070, 1039926, 2938898, 8223400, 22846370, 62930113, 172177400, 467002792, 1259736804, 3371190792, 8973530491, 23728305128, 62421018163, 163255839779, 424842462529, 1100006243934, 2834558927244, 7270915592897
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Being composable here means that the length of v equals the number of distinct parts in y.

Examples

			The a(0) = 1 through a(4) = 18 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(2)  (21)(21)  (31)(31)
                         (21)(12)  (31)(13)
                         (12)(21)  (31)(22)
                         (12)(12)  (13)(31)
                         (111)(3)  (13)(13)
                                   (13)(22)
                                   (22)(4)
                                   (211)(31)
                                   (211)(13)
                                   (211)(22)
                                   (121)(31)
                                   (121)(13)
                                   (121)(22)
                                   (112)(31)
                                   (112)(13)
                                   (112)(22)
                                   (1111)(4)
		

Crossrefs

The case with containment is A032020.
The inhomogeneous version with containment is A355384, partitions A355383.
The version for partitions is A355385, with containment A000009.
A133494 counts compositions of each part of a composition, strict A336139.
A323583 counts splittings of partitions.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(n-1, i-1), i=0..degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Length[Select[Tuples[Join@@Permutations/@IntegerPartitions[n],2], Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,10}]
  • PARI
    a(n) = {if(n==0, 1, my(s=0); forpart(p=n, p=Vec(p); my(S=Set(p)); s += binomial(n-1, #S-1)*(#p)!/prod(i=1, #S, my(c=#select(t->t==S[i], p)); c! )); s)} \\ Andrew Howroyd, Jan 01 2023
    
  • PARI
    \\ for larger n.
    a(n) = { local(Cache=Map());
      my(F(r,m,p,q) = my(key=[r,m,p,q], z); if(!mapisdefined(Cache, key, &z),
      z = if(m==0, if(r==0, p!*binomial(n-1, q-1)), self()(r, m-1, p, q) + sum(j=1, r\m, self()(r-j*m, min(m-1, r-j*m), p+j, q+1)/j!));
      mapput(Cache, key, z) ); z);
      if(n==0, 1, F(n, n, 0, 0))
    } \\ Andrew Howroyd, Jan 01 2023

Formula

a(n) = Sum_{k>=1} binomial(n-1, k-1)*A235998(n, k) for n > 0. - Andrew Howroyd, Jan 01 2023

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 01 2023

A336133 Number of ways to split a strict integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 11, 14, 17, 22, 26, 35, 40, 51, 60, 75, 86, 109, 124, 153, 175, 214, 243, 297, 336, 403, 456, 546, 614, 731, 821, 975, 1095, 1283, 1437, 1689, 1887, 2195, 2448, 2851, 3172, 3676, 4083, 4724, 5245, 6022, 6677, 7695, 8504, 9720
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 9 splittings:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)    (5,2)    (6,2)    (6,3)
                                 (3,2,1)  (6,1)    (7,1)    (7,2)
                                          (4,2,1)  (4,3,1)  (8,1)
                                                   (5,2,1)  (4,3,2)
                                                            (5,3,1)
                                                            (6,2,1)
                                                            (4),(3,2)
The first splitting with more than two blocks is (8),(7,6),(5,4,3,2) under n = 35.
		

Crossrefs

The version with equal sums is A318683.
The version with strictly decreasing sums is A318684.
The version with weakly decreasing sums is A319794.
The version with different sums is A336132.
Starting with a composition gives A304961.
Starting with a non-strict partition gives A336134.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

A336136 Number of ways to split an integer partition of n into contiguous subsequences with weakly increasing sums.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 31, 40, 73, 98, 158, 204, 340, 420, 629, 819, 1202, 1494, 2174, 2665, 3759, 4688, 6349, 7806, 10788, 13035, 17244, 21128, 27750, 33499, 43941, 52627, 67957, 81773, 103658, 124047, 158628, 187788, 235162, 280188, 349612, 413120, 513952, 604568
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(5) = 15 splittings:
  (1)  (2)      (3)          (4)              (5)
       (1,1)    (2,1)        (2,2)            (3,2)
       (1),(1)  (1,1,1)      (3,1)            (4,1)
                (1),(1,1)    (2,1,1)          (2,2,1)
                (1),(1),(1)  (2),(2)          (3,1,1)
                             (1,1,1,1)        (2,1,1,1)
                             (2),(1,1)        (2),(2,1)
                             (1),(1,1,1)      (1,1,1,1,1)
                             (1,1),(1,1)      (2),(1,1,1)
                             (1),(1),(1,1)    (1),(1,1,1,1)
                             (1),(1),(1),(1)  (1,1),(1,1,1)
                                              (1),(1),(1,1,1)
                                              (1),(1,1),(1,1)
                                              (1),(1),(1),(1,1)
                                              (1),(1),(1),(1),(1)
		

Crossrefs

The version with weakly decreasing sums is A316245.
The version with equal sums is A317715.
The version with strictly increasing sums is A336134.
The version with strictly decreasing sums is A336135.
The version with different sums is A336131.
Starting with a composition gives A075900.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],LessEqual@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r >= t && t >= s, self()(r,m,t,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m),s,t+m,1))); recurse(n,n,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024
Previous Showing 31-40 of 68 results. Next