cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A136098 Prime palindromic cyclops numbers.

Original entry on oeis.org

101, 16061, 31013, 35053, 38083, 73037, 74047, 91019, 94049, 1120211, 1150511, 1160611, 1180811, 1190911, 1250521, 1280821, 1360631, 1390931, 1490941, 1520251, 1550551, 1580851, 1630361, 1640461, 1660661, 1670761, 1730371
Offset: 1

Views

Author

Lekraj Beedassy, Mar 15 2008

Keywords

Comments

Prime entries of A138131.

Crossrefs

Programs

  • Maple
    f:= proc(n,d) local L,m,k,p;
      L:= convert(9^d+n,base,9);
      p:= add((1+L[d+1-i])*(10^(i-1)+10^(2*d+1-i)),i=1..d);
      if isprime(p) then p fi;
    end proc:
    [seq(seq(f(i,d),i=0..9^d-1),d=1..3)]; # Robert Israel, Feb 18 2018
  • Mathematica
    Select[Flatten[Table[Select[Range[10^(2n), 10^(2n+1)-1], PalindromeQ[ #] && DigitCount[ #, 10, 0]==1&&IntegerDigits[#][[(IntegerLength[#]+1)/2]]==0&], {n, 3}]],PrimeQ] (* James C. McMahon, Apr 27 2025 *)

A182809 Cyclops-Fibonacci numbers.

Original entry on oeis.org

0, 75025, 6557470319842, 14472334024676221, 99194853094755497
Offset: 1

Views

Author

Omar E. Pol, Dec 16 2010

Keywords

Comments

Note that a(5) = 99194853094755497 is the only known Cyclops-Fibonacci prime.
Next term, if it exists, is > Fibonacci(2359000). - Lars Blomberg, May 10 2011
This sequence is similar to A182811 in the sense that both have four positive terms and the only known prime is also the largest known term. - Omar E. Pol, Feb 18 2018
Indices in A000045 are 0, 25, 63, 79, 83. - Michel Marcus and Omar E. Pol, Feb 18 2018

Examples

			a(2) = 75025 is in the sequence because 75025 is a Fibonacci number A000045 and 75025 is also a cyclops number A134808.
		

Crossrefs

Intersection of A000045 and A134808.

Programs

  • Mathematica
    (* First run the program given for A134808 *) Select[Fibonacci[Range[10^3]], cyclopsQ] (* Alonso del Arte, Dec 16 2010 *)

Extensions

a(4) inserted by Alois P. Heinz, Dec 16 2010

A239827 Cyclops numbers whose squares are cyclops numbers.

Original entry on oeis.org

0, 105, 205, 305, 11014, 11023, 11041, 11059, 12017, 12021, 12046, 12075, 12079, 13027, 13031, 13096, 14011, 14018, 14043, 14068, 14075, 14082, 16019, 16022, 16044, 16072, 16075, 17012, 17091, 17094, 18014, 18039, 18075, 18086, 19016, 19029, 19037, 19058
Offset: 1

Views

Author

Colin Barker, Mar 27 2014

Keywords

Comments

Subsequence of A239589.

Examples

			12046 is in the sequence because 12046^2 = 145106116, and both 12406 and 145106116 are cyclops numbers.
		

Crossrefs

Programs

  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    s=[]; for(n=0, 100000, if(is_cyclops(n) && is_cyclops(n^2), s=concat(s, n))); s

Formula

a(n) = sqrt(A239828(n)).

A252480 Numbers whose decimal representation has at least one '0' digit in a position other than the final digit.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 600, 601, 602, 603, 604, 605, 606
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2014

Keywords

Comments

Similar but different sequences are the "Cyclops numbers" A134808 and A032945 and A051022, which are subsequences, except for the 1- and 2-digit terms.
Also, numbers whose decimal representation cannot be split up between any two digits without producing a string with a leading zero (other than "0" itself).
Also, numbers n > 9 such that floor(n/10) is in A011540, i.e., has a digit '0'.

Programs

  • Mathematica
    Select[Range[10,700],DigitCount[Floor[#/10],10,0]>0&] (* Harvey P. Dale, May 10 2020 *)
  • PARI
    is(n)=n>9 && !vecmin(digits(n\10))

A138831 n-th perfect number minus 1, written in base 2.

Original entry on oeis.org

101, 11011, 111101111, 1111110111111, 1111111111110111111111111, 111111111111111101111111111111111, 1111111111111111110111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008, Apr 09 2008, Apr 14 2008

Keywords

Comments

Subset of A138148, cyclops numbers with binary digits, only.
Subset of A002113, palindromes in base 10.
a(n) has 2*A090748(n) digits 1.
The number of digits of a(n) is 2*A000043(n)-1, equal to A133033(n), the number of proper divisors of n-th perfect number.
a(n) = (A135627(n) written in base 2).

Examples

			n ... A000396(n) - 1 = A135627(n) ............. a(n)
1 ............ 6 - 1 = ...... 5 ............... 101
2 ........... 28 - 1 = ..... 27 .............. 11011
3 .......... 496 - 1 = .... 495 ............ 111101111
4 ......... 8128 - 1 = ... 8127 .......... 1111110111111
5 ..... 33550336 - 1 = 33550335 .... 1111111111110111111111111
		

Crossrefs

Formula

a(n) = A138148(A090748(n)).

A160561 Cyclops primes with circular digits {0,6,8,9}.

Original entry on oeis.org

809, 66089, 68099, 86069, 88069, 89069, 99089, 6680689, 6680699, 6680969, 6690689, 6690899, 6690989, 6860869, 6860989, 6860999, 6890699, 6890969, 6960869, 6980669, 6980899, 6980969, 6990889, 8660689, 8660699, 8660969
Offset: 1

Views

Author

Ki Punches, May 19 2009

Keywords

Comments

The sequence is probably infinite.
The sequence A134809 restricted to cases with digits 6, 8 or 9 (see A001743) at the off-center positions.
Primes in A274765. - Omar E. Pol, Jul 06 2016
Each term is equal to 9 mod 10. - Harvey P. Dale, Feb 02 2021

Crossrefs

Intersection of A000040 (primes), A001743 (numbers with circular digits) and A134808 (cyclops numbers).
Also intersection of A043580 (primes with circular digits) and A134809 (cyclops primes).

Programs

  • Mathematica
    Select[Prime@ Range[10^6], And[OddQ@ Length@ #, Times @@ Boole@ Map[MemberQ[{0, 6, 8, 9}, #] &, Union@ #] == 1, Part[#, Ceiling[Length[#]/2]] == 0, Count[#, 0] == 1] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 05 2016 *)
    Table[Select[FromDigits/@(Flatten[Join[{Take[#,Length[#]/2],0,Take[#,-Length[#]/2]}]]&/@Tuples[{6,8,9},n]),PrimeQ],{n,2,6,2}]//Flatten (* Harvey P. Dale, Feb 02 2021 *)

Extensions

Edited and corrected by Ray Chandler and R. J. Mathar, May 20 2009
Definition simplified by Omar E. Pol, Jun 05 2009

A160725 Cyclops semiprimes.

Original entry on oeis.org

106, 201, 202, 203, 205, 206, 209, 301, 302, 303, 305, 309, 403, 407, 501, 502, 505, 703, 706, 707, 802, 803, 807, 901, 905, 11013, 11014, 11015, 11017, 11019, 11021, 11023, 11029, 11031, 11035, 11038, 11041, 11042, 11051, 11053
Offset: 1

Views

Author

Omar E. Pol, Jun 12 2009

Keywords

Comments

Cyclops numbers (A134808) that are also semiprimes (A001358).

Crossrefs

Programs

  • Maple
    g:= proc(x,n)
      local L,i;
      L:= convert(x+9^(2*n),base,9);
      add((L[i]+1)*10^(i-1),i=1..n)+add((L[i]+1)*10^i,i=n+1..2*n)
    end proc:
    select(t -> numtheory:-bigomega(t)=2,[seq(seq(g(i,n),i=0..9^(2*n)-1),n=1..2)]); # Robert Israel, Jan 20 2019
  • Mathematica
    Select[Range@ 12000, And[OddQ@ #2, #3[[Ceiling[#2/2] ]] == 0, Count[#3, 0] == 1, PrimeOmega@ #1 == 2] & @@ {#, IntegerLength@ #, IntegerDigits@ #} &] (* or *)
    Select[Flatten@ Table[a (10^(d + 1)) + b, {d, 2}, {a, FromDigits /@ Tuples[Range@ 9, {d}]}, {b, FromDigits /@ Tuples[Range@ 9, {d}]}], PrimeOmega@ # == 2 &] (* Michael De Vlieger, Jan 20 2019 *)

A162198 Even cyclops numbers.

Original entry on oeis.org

0, 102, 104, 106, 108, 202, 204, 206, 208, 302, 304, 306, 308, 402, 404, 406, 408, 502, 504, 506, 508, 602, 604, 606, 608, 702, 704, 706, 708, 802, 804, 806, 808, 902, 904, 906, 908, 11012, 11014, 11016, 11018, 11022, 11024, 11026, 11028, 11032, 11034, 11036
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[14000],OddQ[IntegerLength[#]]&&EvenQ[#] && DigitCount[ #,10,0] == 1&&IntegerDigits[#][[(IntegerLength[ #]+1)/2]] == 0&]] (* Harvey P. Dale, May 03 2017 *)

Extensions

Corrected by Harvey P. Dale, May 03 2017

A182811 Cyclops-Lucas numbers.

Original entry on oeis.org

64079, 1860498, 4870847, 688846502588399
Offset: 1

Views

Author

Omar E. Pol, Dec 20 2010

Keywords

Comments

a(4) = 688846502588399 is the only known Cyclops-Lucas prime.
It seems likely that these four are the only terms. There are no further terms below Lucas(10^7), and that number in decimal contains 208435 zeros (with ~208988 expected assuming normality), whereas a member of this sequence must have only 1. - D. S. McNeil, Dec 21 2010
This sequence is similar to A182809 in the sense that both have four positive terms and the only known prime is also the largest known term. - Omar E. Pol, Dec 21 2010
Indices in A000032 are 23, 30, 32, 71. - Michel Marcus and Omar E. Pol, Feb 18 2018

Examples

			a(1) = 64079 is in the sequence because 64079 is a Lucas number and it is also a cyclops number.
		

Crossrefs

Intersection of A000032 and A134808.

Programs

  • Mathematica
    (* First run the program given for A134808 *) Select[LucasL[Range[10^3]], cyclopsQ] (* Alonso del Arte, Dec 20 2010 *)
    Select[LucasL[Range[500]],OddQ[IntegerLength[#]]&&DigitCount[#,10,0]==1&&IntegerDigits[#][[(IntegerLength[#]+1)/2]]==0&] (* Harvey P. Dale, Jul 01 2017 *)

Formula

Intersection of A000032 and A134808.

A183058 Cyclops Sophie-Germain primes.

Original entry on oeis.org

509, 809, 12011, 12041, 13049, 14081, 16091, 18041, 21011, 21089, 22013, 22079, 23099, 25073, 28019, 29021, 29033, 31019, 33023, 33053, 35069, 35081, 35099, 36083, 37013, 37049, 38039, 39089, 41081, 42023, 42071, 42089, 43013
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2010

Keywords

Comments

Sophie Germain primes which are also Cyclops numbers.

Examples

			509 is in the sequence because 509 is a Sophie Germain prime A005384 and it is also a Cyclops number A134808.
		

Crossrefs

Programs

  • Maple
    isA005384 := proc(n) isprime(n) and isprime(2*n+1) ; end proc:
    isA134808 := proc(n) local dgs,ndgs; dgs := convert(n,base,10) ; mdg := (nops(dgs)+1)/2 ; if type(nops(dgs),'even') then false; elif n = 0 then true; else if op(mdg,dgs) <> 0 then false; else if mul(op(k,dgs),k=1..mdg-1) =0 or mul(op(k,dgs),k=mdg+1..nops(dgs)) = 0 then false; else true; end if; end if; end if; end proc:
    isA183058 := proc(n) isA005384(n) and isA134808(n) ; end proc:
    for n from 0 to 50000 do if isA183058(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 05 2011
  • Mathematica
    csgpQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];PrimeQ[2n+1]&&OddQ[len]&&idn[[(len+1)/2]]==0&&Count[idn,0]==1]; Select[Prime[ Range[ 4500]],csgpQ] (* Harvey P. Dale, Jun 06 2020 *)

Formula

A005384 INTERSECT A134808.
Previous Showing 21-30 of 41 results. Next