cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 78 results. Next

A336812 Irregular triangle read by rows T(n,k), n >= 1, k >= 1, in which row n is constructed replacing every term of row n of A336811 with its divisors.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 4, 8, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 9, 1, 7, 1, 2, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2020

Keywords

Comments

Here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the corresponce between all parts of the last section of the set of partitions of n and all divisors of all terms of the n-th row of A336811, with n >= 1. The mentionded parts and the mentioned divisors are the same numbers (see Example section).
For an equivalent table showing the same kind of correspondence for all partitions of all positive integers see the supersequence A338156.

Examples

			Triangle begins:
  [1];
  [1, 2];
  [1, 3],       [1];
  [1, 2, 4],    [1, 2],    [1];
  [1, 5],       [1, 3],    [1, 2], [1],    [1];
  [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1];
  ...
For n = 6 the 6th row of A336811 is [6, 4, 3, 2, 2, 1, 1] so replacing every term with its divisors we have {[1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]} the same as the 6th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  -------------
  [1],
  -------------
  [1, 2];
  -------------
  [1, 3],
  [1];
  -------------
  [1, 2, 4],
  [1, 2],
  [1];
  -------------
  [1, 5],
  [1, 3],
  [1, 2],
  [1],
  [1];
  -------------
  [1, 2, 3, 6],
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1];
  -------------
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and the parts of the last section of the set of partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the last section of the set of partitions of every positive integer.
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| n |         |  1  |   2   |    3    |     4     |      5      |       6       |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   |         |     |       |         |           |             |  6            |
| P |         |     |       |         |           |             |  3 3          |
| A |         |     |       |         |           |             |  4 2          |
| R |         |     |       |         |           |             |  2 2 2        |
| T |         |     |       |         |           |  5          |    1          |
| I |         |     |       |         |           |  3 2        |      1        |
| T |         |     |       |         |  4        |    1        |      1        |
| I |         |     |       |         |  2 2      |      1      |        1      |
| O |         |     |       |  3      |    1      |      1      |        1      |
| N |         |     |  2    |    1    |      1    |        1    |          1    |
| S |         |  1  |    1  |      1  |        1  |          1  |            1  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   | A207031 |  1  |  2 1  |  3 1 1  |  6 3 1 1  |  8 3 2 1 1  | 15 8 4 2 1 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |  |/|/|/|/|/|  |
| I | A182703 |  1  |  1 1  |  2 0 1  |  3 2 0 1  |  5 1 1 0 1  |  7 4 2 1 0 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |  * * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |  1 2 3 4 5 6  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |  = = = = = =  |
|   | A207383 |  1  |  1 2  |  2 0 3  |  3 4 0 4  |  5 2 3 0 5  |  7 8 6 4 0 6  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |  1 2 3     6  |
| D |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 |     |       |  1      |  1 2      |  1   3      |  1 2   4      |
| V |---------|-----|-------|---------|-----------|-------------|---------------|
| I | A027750 |     |       |         |  1        |  1 2        |  1   3        |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
| O | A027750 |     |       |         |           |  1          |  1 2          |
| R | A027750 |     |       |         |           |  1          |  1 2          |
| S |---------|-----|-------|---------|-----------|-------------|---------------|
|   | A027750 |     |       |         |           |             |  1            |
|   | A027750 |     |       |         |           |             |  1            |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
Note that every row in the lower zone lists A027750.
The "section" is the simpler substructure of the set of partitions of n that has this property in the three zones.
Also the lower zone for every positive integer can be constructed using the first n terms of A002865. For example: for n = 6 we consider the first 6 terms of A002865 (that is [1, 0, 1, 1, 2, 2]) and then the 6th slice is formed by a block with the divisors of 6, no block with the divisors of 5, one block with the divisors of 4, one block with the divisors of 3, two blocks with the divisors of 2 and two blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the growth step by step of both the prism of partitions and its associated tower since the number of parts in the last section of the set of partitions of n is equal to A138137(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts in the last section of the set of partitions of n is equal to A138879(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Programs

  • Mathematica
    A336812[row_]:=Flatten[Table[ConstantArray[Divisors[row-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
    Array[A336812,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 16 2023 *)

A182699 Number of emergent parts in all partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 4, 10, 12, 22, 27, 47, 56, 89, 112, 164, 205, 294, 364, 505, 630, 845, 1052, 1393, 1719, 2235, 2762, 3533, 4343, 5506, 6730, 8443, 10296, 12786, 15531, 19161, 23161, 28374, 34201, 41621, 49975, 60513, 72385, 87200, 103999, 124670, 148209
Offset: 0

Views

Author

Omar E. Pol, Nov 29 2010

Keywords

Comments

Here the "emergent parts" of the partitions of n are defined to be the parts (with multiplicity) of all the partitions that do not contain "1" as a part, removed by one copy of the smallest part of every partition. Note that these parts are located in the head of the last section of the set of partitions of n.
Also, here the "filler parts" of the partitions of n are defined to be the parts of the last section of the set of partitions of n that are not the emergent parts.
For n >= 4, length of row n of A183152. - Omar E. Pol, Aug 08 2011
Also total number of parts of the regions that do not contain 1 as a part in the last section of the set of partitions of n (cf. A083751, A187219). - Omar E. Pol, Mar 04 2012

Examples

			For n = 6 the partitions of 6 contain four "emergent" parts: (3), (4), (2), (2), so a(6) = 4. See below the location of the emergent parts.
6
(3) + 3
(4) + 2
(2) + (2) + 2
5 + 1
3 + 2 + 1
4 + 1 + 1
2 + 2 + 1 + 1
3 + 1 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
For a(10) = 22 see the link for the location of the 22 "emergent parts" (colored yellow and green) and the location of the 42 "filler parts" (colored blue) in the last section of the set of partitions of 10.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local t, h;
          if n<0 then [0, 0, 0]
        elif n=0 then [0, 1, 0]
        elif i<2 then [0, 0, 0]
        else t:= b(n, i-1); h:= b(n-i, i);
             [t[1]+h[1]+h[2], t[2], t[3]+h[3]+h[1]]
          fi
        end:
    a:= n-> b(n, n)[3]:
    seq (a(n), n=0..50);  # Alois P. Heinz, Oct 21 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{t, h}, Which[n<0, {0, 0, 0}, n == 0, {0, 1, 0}, i<2 , {0, 0, 0}, True, t = b[n, i-1]; h = b[n-i, i]; Join [t[[1]] + h[[1]] + h[[2]], t[[2]], t[[3]] + h[[3]] + h[[1]] ]]]; a[n_] := b[n, n][[3]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = A138135(n) - A002865(n), n >= 1.
From Omar E. Pol, Oct 21 2011: (Start)
a(n) = A006128(n) - A006128(n-1) - A000041(n), n >= 1.
a(n) = A138137(n) - A000041(n), n >= 1. (End)
a(n) = A076276(n) - A006128(n-1), n >= 1. - Omar E. Pol, Oct 30 2011

A138135 Number of parts > 1 in the last section of the set of partitions of n.

Original entry on oeis.org

0, 1, 1, 3, 3, 8, 8, 17, 20, 34, 41, 68, 80, 123, 153, 219, 271, 382, 469, 642, 795, 1055, 1305, 1713, 2102, 2713, 3336, 4241, 5190, 6545, 7968, 9950, 12090, 14953, 18104, 22255, 26821, 32752, 39371, 47774, 57220, 69104
Offset: 1

Views

Author

Omar E. Pol, Mar 30 2008

Keywords

Comments

Also first differences of A096541. For more information see A135010.

Crossrefs

Zero together with the column k=2 of A207031.

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+`if`(i>1, g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]-b(n-1, n-1)[2]:
    seq (a(n), n=1..60); # Alois P. Heinz, Apr 04 2012
  • Mathematica
    a[n_] := DivisorSigma[0, n] - 1 + Sum[(DivisorSigma[0, k] - 1)*(PartitionsP[n - k] - PartitionsP[n - k - 1]), {k, 1, n - 1}]; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 14 2013, from 1st formula *)
    Table[Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 42}]  (* Robert Price, May 01 2020 *)
  • PARI
    a(n)=numdiv(n)-1+sum(k=1,n-1,(numdiv(k)-1)*(numbpart(n-k) - numbpart(n-k-1))) \\ Charles R Greathouse IV, Jan 14 2013

Formula

a(n) = A096541(n)-A096541(n-1) = A138137(n)-A000041(n-1) = A006128(n)-A006128(n-1)-A000041(n-1).
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=2} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021

A194812 Square array read by antidiagonals: T(n,k) = number of parts of size k in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 0, 0, 0, 5, 2, 1, 0, 0, 7, 1, 0, 0, 0, 0, 11, 4, 1, 1, 0, 0, 0, 15, 3, 2, 0, 0, 0, 0, 0, 22, 8, 2, 1, 1, 0, 0, 0, 0, 30, 7, 3, 1, 0, 0, 0, 0, 0, 0, 42, 15, 6, 3, 1, 1, 0, 0, 0, 0, 0, 56, 15, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 77, 27, 10
Offset: 1

Views

Author

Omar E. Pol, Feb 04 2012

Keywords

Comments

It appears that in the column k, starting in row n, the sum of k successive terms is equal to A000041(n-1).

Examples

			Array begins:
.  1,  0,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  1,  1,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  2,  0,  1,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
.  3,  2,  0,  1, 0, 0, 0, 0, 0, 0, 0, 0,...
.  5,  1,  1,  0, 1, 0, 0, 0, 0, 0, 0, 0,...
.  7,  4,  2,  1, 0, 1, 0, 0, 0, 0, 0, 0,...
. 11,  3,  2,  1, 1, 0, 1, 0, 0, 0, 0, 0,...
. 15,  8,  3,  3, 1, 1, 0, 1, 0, 0, 0, 0,...
. 22,  7,  6,  2, 2, 1, 1, 0, 1, 0, 0, 0,...
. 30, 15,  6,  5, 3, 2, 1, 1, 0, 1, 0, 0,...
. 42, 15, 10,  5, 4, 2, 2, 1, 1, 0, 1, 0,...
. 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1,...
...
For n = 7, from the conjecture we have that p(n-1) = p(6) = 11 = 3+8 = 2+3+6 = 1+3+2+5 = 1+1+2+3+4 = 0+1+1+2+2+5, etc. where p(n) = A000041(n).
		

Crossrefs

Columns 1-4: A000041, A182712, A182713, A182714. Main triangle: A182703.

Formula

It appears that A000041(n) = Sum_{j=1..k} T(n+j,k), n >= 0, k >= 1.

A138880 Sum of all parts of all partitions of n that do not contain 1 as a part.

Original entry on oeis.org

0, 2, 3, 8, 10, 24, 28, 56, 72, 120, 154, 252, 312, 476, 615, 880, 1122, 1584, 1995, 2740, 3465, 4620, 5819, 7680, 9575, 12428, 15498, 19824, 24563, 31170, 38378, 48224, 59202, 73678, 90055, 111384, 135420, 166364, 201630, 246120, 297045, 360822
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2008

Keywords

Comments

Sum of all parts > 1 of the last section of the set of partitions of n.
Row sums of triangle A182710. Also row sums of other similar triangles as A138136 and A182711.
Partial sums give A194552. - Omar E. Pol, Sep 23 2013

Crossrefs

Programs

  • Mathematica
    Table[Total[Flatten[Select[IntegerPartitions[n],FreeQ[#,1]&]]],{n,50}] (* Harvey P. Dale, May 24 2015 *)
    a[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 07 2015 *)

Formula

a(n) = A002865(n)*n = (A000041(n) - A000041(n-1))*n = A138879(n) - A000041(n-1).
a(n) ~ Pi^2/6*A000070(n-2). - Peter Bala, Dec 23 2013
G.f.: x*f'(x), where f(x) = Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2*n)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Jul 06 2019

Extensions

Better definition from Omar E. Pol, Sep 23 2013

A225600 Toothpick sequence related to integer partitions (see Comments lines for definition).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 14, 15, 19, 24, 27, 28, 33, 40, 42, 43, 47, 49, 52, 53, 59, 70, 73, 74, 79, 81, 85, 86, 93, 108, 110, 111, 115, 117, 120, 121, 127, 131, 136, 137, 141, 142, 150, 172, 175, 176, 181, 183, 187, 188, 195, 199, 202, 203, 209, 211, 216, 217, 226, 256
Offset: 0

Views

Author

Omar E. Pol, Jul 28 2013

Keywords

Comments

This infinite toothpick structure is a minimalist diagram of regions of the set of partitions of all positive integers. For the definition of "region" see A206437. The sequence shows the growth of the diagram as a cellular automaton in which the "input" is A141285 and the "output” is A194446.
To define the sequence we use the following rules:
We start in the first quadrant of the square grid with no toothpicks.
If n is odd we place A141285((n+1)/2) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, (n+1)/2).
If n is even we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. In this case the number of toothpicks added in vertical direction is equal to A194446(n/2).
The sequence gives the number of toothpicks after n stages. A220517 (the first differences) gives the number of toothpicks added at the n-th stage.
Also the toothpick structure (HV/HHVV/HHHVVV/HHV/HHHHVVVVV...) can be transformed in a Dyck path (UDUUDDUUUDDDUUDUUUUDDDDD...) in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps, so the sequence can be represented by the vertices (or the number of steps from the origin) of the Dyck path. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). See Example section. See also A211978, A220517, A225610.

Examples

			For n = 30 the structure has 108 toothpicks, so a(30) = 108.
.                               Diagram of regions
Partitions of 7                 and partitions of 7
.                                   _ _ _ _ _ _ _
7                               15  _ _ _ _      |
4 + 3                               _ _ _ _|_    |
5 + 2                               _ _ _    |   |
3 + 2 + 2                           _ _ _|_ _|_  |
6 + 1                           11  _ _ _      | |
3 + 3 + 1                           _ _ _|_    | |
4 + 2 + 1                           _ _    |   | |
2 + 2 + 2 + 1                       _ _|_ _|_  | |
5 + 1 + 1                        7  _ _ _    | | |
3 + 2 + 1 + 1                       _ _ _|_  | | |
4 + 1 + 1 + 1                    5  _ _    | | | |
2 + 2 + 1 + 1 + 1                   _ _|_  | | | |
3 + 1 + 1 + 1 + 1                3  _ _  | | | | |
2 + 1 + 1 + 1 + 1 + 1            2  _  | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1        1   | | | | | | |
.
.                                   1 2 3 4 5 6 7
.
Illustration of initial terms:
.
.                              _ _ _    _ _ _
.                _ _   _ _     _ _      _ _  |
.      _    _    _     _  |    _  |     _  | |
.            |    |     | |     | |      | | |
.
.      1    2     4     6       9        12
.
.
.                          _ _ _ _     _ _ _ _
.      _ _       _ _       _ _         _ _    |
.      _ _ _     _ _|_     _ _|_       _ _|_  |
.      _ _  |    _ _  |    _ _  |      _ _  | |
.      _  | |    _  | |    _  | |      _  | | |
.       | | |     | | |     | | |       | | | |
.
.        14        15         19          24
.
.
.                          _ _ _ _ _    _ _ _ _ _
.    _ _ _      _ _ _      _ _ _        _ _ _    |
.    _ _ _ _    _ _ _|_    _ _ _|_      _ _ _|_  |
.    _ _    |   _ _    |   _ _    |     _ _    | |
.    _ _|_  |   _ _|_  |   _ _|_  |     _ _|_  | |
.    _ _  | |   _ _  | |   _ _  | |     _ _  | | |
.    _  | | |   _  | | |   _  | | |     _  | | | |
.     | | | |    | | | |    | | | |      | | | | |
.
.       27         28         33            40
.
Illustration of initial terms as vertices (or the number of steps from the origin) of a Dyck path:
.
7                                    33
.                                    /\
5                      19           /  \
.                      /\          /    \
3            9        /  \     27 /      \
2       4    /\   14 /    \    /\/        \
1    1  /\  /  \  /\/      \  / 28         \
.    /\/  \/    \/ 15       \/              \
.   0  2   6    12          24              40
.
		

Crossrefs

Formula

a(A139582(n)) = a(2*A000041(n)) = 2*A006128(n) = A211978(n), n >= 1.

A339278 Irregular triangle read by rows T(n,k), (n >= 1, k >= 1), in which the partition number A000041(n-1) is the length of row n and every column k is A000203, the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 7, 3, 1, 6, 4, 3, 1, 1, 12, 7, 4, 3, 3, 1, 1, 8, 6, 7, 4, 4, 3, 3, 1, 1, 1, 1, 15, 12, 6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 13, 8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 18, 15, 8, 12, 12, 6, 6, 7, 7, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

The sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n.
T(n,k) is also the number of cubic cells (or cubes) added at the n-th stage in the k-th level starting from the base in the tower described in A221529, assuming that the tower is an object under construction (see the example). - Omar E. Pol, Jan 20 2022

Examples

			Triangle begins:
   1;
   3;
   4,  1;
   7,  3,  1;
   6,  4,  3, 1, 1;
  12,  7,  4, 3, 3, 1, 1;
   8,  6,  7, 4, 4, 3, 3, 1, 1, 1, 1;
  15, 12,  6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1;
  13,  8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
...
From _Omar E. Pol_, Jan 13 2022: (Start)
Illustration of the first six rows of triangle showing the growth of the symmetric tower described in A221529:
    Level k: 1              2         3        4       5      6     7
Stage
  n   _ _ _ _ _ _ _ _
     |            _  |
  1  |           |_| |
     |_ _ _ _ _ _ _ _|
     |          _    |
     |         | |_  |
  2  |         |_ _| |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _
     |        _      |        _  |
     |       | |     |       |_| |
  3  |       |_|_ _  |           |
     |         |_ _| |           |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _
     |      _        |      _    |      _  |
     |     | |       |     | |_  |     |_| |
  4  |     | |_      |     |_ _| |         |
     |     |_  |_ _  |           |         |
     |       |_ _ _| |           |         |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _ _ _ _ _
     |    _          |    _      |    _    |    _  |    _  |
     |   | |         |   | |     |   | |_  |   |_| |   |_| |
     |   | |         |   |_|_ _  |   |_ _| |       |       |
  5  |   |_|_        |     |_ _| |         |       |       |
     |       |_ _ _  |           |         |       |       |
     |       |_ _ _| |           |         |       |       |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _ _ _ _
     |  _            |  _        |  _      |  _    |  _    |  _  |  _  |
     | | |           | | |       | | |     | | |_  | | |_  | |_| | |_| |
     | | |           | | |_      | |_|_ _  | |_ _| | |_ _| |     |     |
     | | |_ _        | |_  |_ _  |   |_ _| |       |       |     |     |
  6  | |_    |       |   |_ _ _| |         |       |       |     |     |
     |   |_  |_ _ _  |           |         |       |       |     |     |
     |     |_ _ _ _| |           |         |       |       |     |     |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _|_ _ _|
.
Every cell in the diagram of the symmetric representation of sigma represents a cubic cell or cube.
For n = 6 and k = 3 we add four cubes at 6th stage in the third level of the structure of the tower starting from the base so T(6,3) = 4.
For n = 9 another connection with the tower is as follows:
First we take the columns from the above triangle and build a new triangle in which all columns start at row 1 as shown below:
.
   1,  1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
   3,  3,  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3;
   4,  4,  4, 4, 4, 4, 4, 4, 4, 4, 4;
   7,  7,  7, 7, 7, 7, 7;
   6,  6,  6, 6, 6;
  12, 12, 12;
   8,  8;
  15;
  13;
.
Then we rotate the triangle by 90 degrees as shown below:
                                       _
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  |_|_
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |_ _|_
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |_ _|_|_
  1, 3, 4, 7;                         |     | |
  1, 3, 4, 7;                         |_ _ _| |_
  1, 3, 4, 7, 6;                      |     |   |
  1, 3, 4, 7, 6;                      |_ _ _|_ _|_
  1, 3, 4, 7, 6, 12;                  |_ _ _ _| | |_
  1, 3, 4, 7, 6, 12, 8;               |_ _ _ _|_|_ _|_ _
  1, 3, 4, 7, 6, 12, 8, 15; 13;       |_ _ _ _ _|_ _|_ _|
.
                                         Lateral view
                                         of the tower
.                                      _ _ _ _ _ _ _ _ _
                                      |_| | | | | | |   |
                                      |_ _|_| | | | |   |
                                      |_ _|  _|_| | |   |
                                      |_ _ _|    _|_|   |
                                      |_ _ _|  _|    _ _|
                                      |_ _ _ _|     |
                                      |_ _ _ _|  _ _|
                                      |         |
                                      |_ _ _ _ _|
.
                                           Top view
                                         of the tower
.
The sum of the m-th row of the new triangle equals A024916(j) where j is the length of the m-th row, equaling the number of cubic cells in the m-th level of the tower. For example: the last row of triangle has 9 terms and the sum of the last row is 1 + 3 + 4 + 7 + 6 + 12 + 8 + 15 + 13 = A024916(9) = 69, equaling the number of cubes in the base of the tower. (End)
		

Crossrefs

Sum of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000203.
The length of the m-th block in row n is A187219(m), m >= 1.
Row sums give A138879.
Cf. A337209 (another version).
Cf. A272172 (analog for the stepped pyramid described in A245092).

Programs

  • Mathematica
    A339278[rowmax_]:=Table[Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]],{n,rowmax}];
    A339278[15] (* Generates 15 rows *) (* Paolo Xausa, Feb 17 2023 *)
  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
    
  • PARI
    A339278(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(m-1)-numbpart(m-2),i,sigma(n-m+1)))));
    A339278(15) \\ Generates 15 rows \\ Paolo Xausa, Feb 17 2023

Formula

a(m) = A000203(A336811(m)).
T(n,k) = A000203(A336811(n,k)).

A220517 First differences of A225600. Also A141285 and A194446 interleaved.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 2, 1, 4, 5, 3, 1, 5, 7, 2, 1, 4, 2, 3, 1, 6, 11, 3, 1, 5, 2, 4, 1, 7, 15, 2, 1, 4, 2, 3, 1, 6, 4, 5, 1, 4, 1, 8, 22, 3, 1, 5, 2, 4, 1, 7, 4, 3, 1, 6, 2, 5, 1, 9, 30, 2, 1, 4, 2, 3, 1, 6, 4, 5, 1, 4, 1, 8, 7, 4, 1, 7, 2, 6, 1, 5, 1, 10, 42
Offset: 1

Views

Author

Omar E. Pol, Feb 07 2013

Keywords

Comments

Number of toothpicks added at n-th stage to the toothpick structure (related to integer partitions) of A225600.

Examples

			Written as an irregular triangle in which row n has length 2*A187219(n) we can see that the right border gives A000041 and the previous term of the last term in row n is n.
1,1;
2,2;
3,3;
2,1,4,5;
3,1,5,7;
2,1,4,2,3,1,6,11;
3,1,5,2,4,1,7,15;
2,1,4,2,3,1,6,4,5,1,4,1,8,22;
3,1,5,2,4,1,7,4,3,1,6,2,5,1,9,30;
2,1,4,2,3,1,6,4,5,1,4,1,8,7,4,1,7,2,6,1,5,1,10,42;
.
Illustration of the first seven rows of triangle as a minimalist diagram of regions of the set of partitions of 7:
.      _ _ _ _ _ _ _
. 15   _ _ _ _      |
.      _ _ _ _|_    |
.      _ _ _    |   |
.      _ _ _|_ _|_  |
. 11   _ _ _      | |
.      _ _ _|_    | |
.      _ _    |   | |
.      _ _|_ _|_  | |
.  7   _ _ _    | | |
.      _ _ _|_  | | |
.  5   _ _    | | | |
.      _ _|_  | | | |
.  3   _ _  | | | | |
.  2   _  | | | | | |
.  1    | | | | | | |
.
.      1 2 3 4 5 6 7
.
Also using the elements of this diagram we can draw a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). See below:
.
7..................................
.                                 /\
5....................            /  \                /\
.                   /\          /    \          /\  /
3..........        /  \        /      \        /  \/
2.....    /\      /    \    /\/        \      /
1..  /\  /  \  /\/      \  /            \  /\/
0 /\/  \/    \/          \/              \/
. 0,2,  6,   12,         24,             40... = A211978
.  1, 4,   9,       19,           33... = A179862
.
		

Crossrefs

Formula

a(2n-1) = A141285(n); a(2n) = A194446(n), n >= 1

A221530 Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 4, 2, 3, 5, 6, 4, 3, 2, 7, 10, 6, 6, 2, 4, 11, 14, 10, 9, 4, 4, 2, 15, 22, 14, 15, 6, 8, 2, 4, 22, 30, 22, 21, 10, 12, 4, 4, 3, 30, 44, 30, 33, 14, 20, 6, 8, 3, 4, 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2, 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Comments

T(n,k) is the number of partitions of n that contain k as a part multiplied by the number of divisors of k.
It appears that T(n,k) is also the total number of appearances of k in the last k sections of the set of partitions of n multiplied by the number of divisors of k.
T(n,k) is also the number of partitions of k into equal parts multiplied by the number of ones in the j-th section of the set of partitions of n, where j = (n - k + 1).
For another version see A245095. - Omar E. Pol, Jul 15 2014

Examples

			For n = 6:
  -------------------------
  k   A000005        T(6,k)
  1      1  *  7   =    7
  2      2  *  5   =   10
  3      2  *  3   =    6
  4      3  *  2   =    6
  5      2  *  1   =    2
  6      4  *  1   =    4
  .         A000041
  -------------------------
So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6).
.
Triangle begins:
  1;
  1,   2;
  2,   2,  2;
  3,   4,  2,  3;
  5,   6,  4,  3,  2;
  7,  10,  6,  6,  2,  4;
  11, 14, 10,  9,  4,  4,  2;
  15, 22, 14, 15,  6,  8,  2,  4;
  22, 30, 22, 21, 10, 12,  4,  4,  3;
  30, 44, 30, 33, 14, 20,  6,  8,  3,  4;
  42, 60, 44, 45, 22, 28, 10, 12,  6,  4,  2;
  56, 84, 60, 66, 30, 44, 14, 20,  9,  8,  2,  6;
  ...
		

Crossrefs

Similar to A221529.
Columns 1-2: A000041, A139582. Leading diagonals 1-3: A000005, A000005, A062011. Row sums give A006128.

Programs

  • Mathematica
    A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* Paolo Xausa, Sep 04 2023 *)
  • PARI
    row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ Michel Marcus, Jul 18 2014

Formula

T(n,k) = d(k)*p(n-k) = A000005(k)*A027293(n,k).

A225610 Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.

Original entry on oeis.org

1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2013

Keywords

Comments

a(n) is also the total number of toothpicks in a toothpick structure which represents a diagram of regions of the set of partitions of n, n >= 1. The number of horizontal toothpicks is A225596(n). The number of vertical toothpicks is A093694(n). The difference between vertical toothpicks and horizontal toothpicks is A000041(n) - n = A000094(n+1). The total area (or total number of cells) of the diagram is A066186(n). The number of parts in the k-th region is A194446(k). The area (or number of cells) of the k-th region is A186412(k). For the definition of "region" see A206437. For a minimalist version of the diagram (which can be transformed into a Dyck path) see A211978. See also A225600.

Examples

			For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
.                               Diagram of regions
Partitions of 7                 and partitions of 7
.                                   _ _ _ _ _ _ _
7                               15 |_ _ _ _      |
4 + 3                              |_ _ _ _|_    |
5 + 2                              |_ _ _    |   |
3 + 2 + 2                          |_ _ _|_ _|_  |
6 + 1                           11 |_ _ _      | |
3 + 3 + 1                          |_ _ _|_    | |
4 + 2 + 1                          |_ _    |   | |
2 + 2 + 2 + 1                      |_ _|_ _|_  | |
5 + 1 + 1                        7 |_ _ _    | | |
3 + 2 + 1 + 1                      |_ _ _|_  | | |
4 + 1 + 1 + 1                    5 |_ _    | | | |
2 + 2 + 1 + 1 + 1                  |_ _|_  | | | |
3 + 1 + 1 + 1 + 1                3 |_ _  | | | | |
2 + 1 + 1 + 1 + 1 + 1            2 |_  | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1        1 |_|_|_|_|_|_|_|
.
.                                   1 2 3 4 5 6 7
.
Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                        |_ _ _      |
.                                        |_ _ _|_    |
.                                        |_ _    |   |
.                             _ _ _ _ _  |_ _|_ _|_  |
.                            |_ _ _    | |_ _ _    | |
.                   _ _ _ _  |_ _ _|_  | |_ _ _|_  | |
.                  |_ _    | |_ _    | | |_ _    | | |
.           _ _ _  |_ _|_  | |_ _|_  | | |_ _|_  | | |
.     _ _  |_ _  | |_ _  | | |_ _  | | | |_ _  | | | |
. _  |_  | |_  | | |_  | | | |_  | | | | |_  | | | | |
.|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4    10     18       33         52          87
		

Crossrefs

Formula

a(n) = 2*A006128(n) + A000041(n) + n = A211978(n) + A133041(n) = A093694(n) + A006128(n) + n = A093694(n) + A225596(n).
Previous Showing 11-20 of 78 results. Next