cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A195241 Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.

Original entry on oeis.org

1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0

Views

Author

Bruno Berselli, Sep 13 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the line 1, 2, 3, 23,.. in the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
This is a subsequence of A110326 (without signs) and A047838 (apart from the second term, 2).

Crossrefs

Programs

  • Magma
    m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
    
  • Mathematica
    CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
  • Maxima
    makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
  • PARI
    Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
    

Formula

G.f.: (1-x+19*x^3-3*x^4)/(1-x)^3.
a(n) = 8*n^2-20*n+11 for n>1; a(0)=1, a(1)=2.

A349081 Numbers k for which there exist two integers m with 1 <= m_1 < m_2 <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

8, 14, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 574, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872, 4048, 4232, 4416, 4608, 4800, 5000
Offset: 1

Views

Author

Bernard Schott, Dec 01 2021

Keywords

Comments

This sequence is the union of three infinite and disjoint subsequences:
-> Numbers k = 8t^2 > 0 (A139098); for these numbers, m_1 = k/2 - 1 = 4t^2-1 < m_2 = k/2 = 4t^2 (see example for k = 8).
-> Numbers k = 8t*(t+1) (A035008); for these numbers, m_1 = k/2 = 4t(t+1) < m_2 = k/2 + 1 = (2t+1)^2 (see example for k = 16).
-> Even numbers of the form 2t^2-4, t>1 in A001541 (A349766); for these numbers, m_1 = k/2 + 1 = t^2 - 1 < m_2 = k/2 + 2 = t^2 (see example for k = 14).
See A348692 for further information.

Examples

			For k = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For k = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For k = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
		

Crossrefs

Subsequence of A349079.

Programs

  • Mathematica
    Do[j=0;l=1;g=BarnesG[k+2];While[j<2&&l<=k,If[IntegerQ@Sqrt[g/l!],j++];l++];If[j==2,Print@k],{k,5000}] (* Giorgos Kalogeropoulos, Dec 02 2021 *)
  • PARI
    sf(n) = prod(k=2, n, k!); \\ A000178
    isok(m) = if (!(m%2), my(s=sf(m)); #select(issquare, vector(4, k, s/(m/2+k-2)!), 1) == 2); \\ Michel Marcus, Dec 04 2021

A354595 a(n) = n^2 + 4*floor(n/2)^2.

Original entry on oeis.org

0, 1, 8, 13, 32, 41, 72, 85, 128, 145, 200, 221, 288, 313, 392, 421, 512, 545, 648, 685, 800, 841, 968, 1013, 1152, 1201, 1352, 1405, 1568, 1625, 1800, 1861, 2048, 2113, 2312, 2381, 2592, 2665, 2888, 2965, 3200, 3281, 3528, 3613, 3872
Offset: 0

Views

Author

David Lovler, Jun 01 2022

Keywords

Comments

The first bisection is A139098, the second bisection is A102083.

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 + 4 Floor[n/2]^2
    Table[a[n], {n, 0, 90}]    (* A354595 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 8, 13, 32}, 60]
  • PARI
    a(n) = n^2 + 4*(n\2)^2;

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n >= 5.
a(n) = A000290(n) + 4*A008794(n).
G.f.: x*(1 + 7*x + 3*x^2 + 5*x^3)/((1 - x)^3*(1 + x)^2).
E.g.f.: 2*x^2*cosh(x) + (1 + 2*x + 2*x^2)*sinh(x). - Stefano Spezia, Jun 07 2022

A349766 Numbers of the form 2*t^2-4 when t > 1 is a term in A001541.

Original entry on oeis.org

14, 574, 19598, 665854, 22619534, 768398398, 26102926094, 886731088894, 30122754096398, 1023286908188734, 34761632124320654, 1180872205318713598, 40114893348711941774, 1362725501650887306814, 46292552162781456489998, 1572584048032918633353214, 53421565080956452077519374
Offset: 1

Views

Author

Bernard Schott, Dec 04 2021

Keywords

Comments

Equivalently: integers k such that k$ / (k/2+1)! and k$ / (k/2+2)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information).
The 3 subsequences of A349081 are A035008, A139098 and this one.

Examples

			A001541(1) = 3, then for t = 3, 2*t^2-4 = 14; also for k = 14, 14$ / 8! = 1309248519599593818685440000000^2 and 14$ / 9! = 436416173199864606228480000000^2. Hence, 14 is a term.
		

Crossrefs

Programs

  • Maple
    with(orthopoly):
    sequence = (2*T(n,3)^2-4, n=1..20);
  • Mathematica
    (2*#^2 - 4) & /@ LinearRecurrence[{6, -1}, {3, 17}, 17] (* Amiram Eldar, Dec 04 2021 *)
    LinearRecurrence[{35, -35, 1},{14, 574, 19598},17] (* Ray Chandler, Mar 01 2024 *)
  • PARI
    a(n) = my(t=subst(polchebyshev(n), 'x, 3)); 2*t^2-4; \\ Michel Marcus, Dec 04 2021

Formula

a(n) = 2*(cosh(2*n*arcsinh(1)))^2 - 4.
a(n) = 16*A001110(n) - 2. - Hugo Pfoertner, Dec 04 2021

A251091 a(n) = n^2 / gcd(n+2, 4).

Original entry on oeis.org

0, 1, 1, 9, 8, 25, 9, 49, 32, 81, 25, 121, 72, 169, 49, 225, 128, 289, 81, 361, 200, 441, 121, 529, 288, 625, 169, 729, 392, 841, 225, 961, 512, 1089, 289, 1225, 648, 1369, 361, 1521, 800, 1681, 441, 1849, 968, 2025, 529, 2209, 1152, 2401, 625, 2601, 1352
Offset: 0

Views

Author

Paul Curtz, May 08 2015

Keywords

Comments

A061038(n), which appears in 4*a(n) formula, is a permutation of n^2.
Origin. In December 2010, I wrote in my 192-page Exercise Book no. 5, page 41, the array (difference table of the first row):
1 0, 1/3, 1, 9/5, 8/3, 25/7, 9/2, 49/9, ...
-1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, ...
Numerators are listed in A176126, denominators are in A064038, and denominator - numerator = 2, 2, 1, 1,... (A014695).
4/3, 1/3, 2/15, 1/15, 4/105, 1/42, 1/63, 1/90, 4/495, ...
-1, -1/5, -1/15, -1/35, -1/70, -1/126, -1/210, -1/330, -1/495, ...
where the denominators of the second row are listed in A000332.
Also for those of the inverse binomial transform
1, -1, 4/3, -1, 4/5, -2/3, 4/7, -1/2, 4/9, -2/5, 4/11, -1/3, ... ?
a(n) is the (n+1)-th term of the numerators of the first row.

Examples

			a(0) = 0/2, a(1) = 1/1, a(2) = 4/4, a(3) = 9/1.
		

Crossrefs

Programs

  • Magma
    [(1-(1/16)*(1+(-1)^n)*(5-(-1)^(n div 2)) )*n^2: n in [0..60]]; // Vincenzo Librandi, Jun 12 2015
  • Maple
    seq(seq((4*i+j-1)^2/[2,1,4,1][j],j=1..4),i=0..30); # Robert Israel, May 14 2015
  • Mathematica
    f[n_] := Switch[ Mod[n, 4], 0, n^2/2, 1, n^2, 2, n^2/4, 3, n^2]; Array[f, 50, 0] (* or *) Table[(4 i + j - 1)^2/{2, 1, 4, 1}[[j]], {i, 0, 12}, {j, 4}] // Flatten (* after Robert Israel *) (* or *) LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 1, 9, 8, 25, 9, 49, 32, 81, 25, 121}, 53] (* or *) CoefficientList[ Series[-((x (1 + x (1 + x (9 + x (8 + x (22 + x (6 + x (22 + x (8 + x (9 + x + x^2))))))))))/(-1 + x^4)^3), {x, 0, 52}], x] (* Robert G. Wilson v, May 19 2015 *)
  • PARI
    concat(0, Vec(-x*(x^10 + x^9 + 9*x^8 + 8*x^7 + 22*x^6 + 6*x^5 + 22*x^4 + 8*x^3 + 9*x^2 + x + 1) / ((x-1)^3*(x+1)^3*(x^2+1)^3) + O(x^100))) \\ Colin Barker, May 14 2015
    

Formula

a(n) = n^2/(period 4: repeat 2, 1, 4, 1).
a(4n) = 8*n^2, a(2n+1) = a(4n+2) = (2*n+1)^2.
a(n+4) = a(n) + 8*A060819(n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>11.
4*a(n) = (period 4: repeat 2, 1, 4, 1) * A061038(n).
G.f.: -x*(x^10+x^9+9*x^8+8*x^7+22*x^6+6*x^5+22*x^4+8*x^3+9*x^2+x+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, May 14 2015
a(2n) = A181900(n), a(2n+1) = A016754(n). [Bruno Berselli, May 14 2015]
a(n) = ( 1 - (1/16)*(1+(-1)^n)*(5-(-1)^(n/2)) )*n^2. - Bruno Berselli, May 14 2015
Sum_{n>=1} 1/a(n) = 13*Pi^2/48. - Amiram Eldar, Aug 12 2022

Extensions

Missing term (1521) inserted in the sequence by Colin Barker, May 14 2015
Definition uses a formula by Jean-François Alcover, Jul 01 2015
Keyword:mult added by Andrew Howroyd, Aug 06 2018

A303302 a(n) = 34*n^2.

Original entry on oeis.org

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
Offset: 0

Views

Author

Omar E. Pol, May 13 2018

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

Programs

  • Magma
    [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
  • Mathematica
    Table[34 n^2, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{0,34,136},50] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    a(n) = 34*n^2;
    
  • PARI
    concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
    

Formula

a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A361521 Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 4, 0, 0, 9, 12, 6, 0, 0, 14, 24, 21, 8, 0, 0, 20, 40, 45, 32, 10, 0, 0, 27, 60, 78, 72, 45, 12, 0, 0, 35, 84, 120, 128, 105, 60, 14, 0, 0, 44, 112, 171, 200, 190, 144, 77, 16, 0, 0, 54, 144, 231, 288, 300, 264, 189, 96, 18, 0
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Comments

A detailed combinatorial interpretation can be found in A361682.

Examples

			[0] 0,  0,  0,   0,   0,   0,   0,    0, ...  A000004
[1] 0,  2,  5,   9,  14,  20,  27,   35, ...  A000096
[2] 0,  4, 12,  24,  40,  60,  84,  112, ...  A046092
[3] 0,  6, 21,  45,  78, 120, 171,  231, ...  A081266
[4] 0,  8, 32,  72, 128, 200, 288,  392, ...  A139098
[5] 0, 10, 45, 105, 190, 300, 435,  595, ...
[6] 0, 12, 60, 144, 264, 420, 612,  840, ...  A153792
[7] 0, 14, 77, 189, 350, 560, 819, 1127, ...
       | A028347 |     A163761
     A005843  A067725
.
[0] 0;
[1] 0,  0;
[2] 0,  2,   0;
[3] 0,  5,   4,   0;
[4] 0,  9,  12,   6,   0;
[5] 0, 14,  24,  21,   8,   0;
[6] 0, 20,  40,  45,  32,  10,   0;
[7] 0, 27,  60,  78,  72,  45,  12,  0;
[8] 0, 35,  84, 120, 128, 105,  60, 14,  0;
[9] 0, 44, 112, 171, 200, 190, 144, 77, 16, 0;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;

Formula

A(n, k) = n*k*(4 + n*(k - 1))/2.
T(n, k) = k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = A361682(n, k) - 1.

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Previous Showing 21-28 of 28 results.