A139277
a(n) = n*(8*n+5).
Original entry on oeis.org
0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0
Cf.
A139271,
A139272,
A139273,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
-
Table[n (8 n + 5), {n, 0, 50}] (* Bruno Berselli, Aug 22 2018 *)
LinearRecurrence[{3,-3,1},{0,13,42},50] (* Harvey P. Dale, Dec 04 2018 *)
-
a(n)=n*(8*n+5) \\ Charles R Greathouse IV, Jun 17 2017
A195605
a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.
Original entry on oeis.org
2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0
Cf.
A047621 (contains first differences),
A016754 (contains the sum of any two consecutive terms).
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195241 [incomplete list].
-
[(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
-
CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
-
for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));
A361397
Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 20, 4, 0, 1, 8, 54, 176, 10, 0, 1, 10, 104, 996, 1876, 28, 0, 1, 12, 170, 2944, 22734, 22064, 84, 0, 1, 14, 252, 6500, 108136, 577692, 275568, 264, 0, 1, 16, 350, 12144, 332050, 4525888, 15680628, 3584064, 858, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 2, 20, 54, 104, 170, 252, ...
0, 4, 176, 996, 2944, 6500, 12144, ...
0, 10, 1876, 22734, 108136, 332050, 796860, ...
0, 28, 22064, 577692, 4525888, 19784060, 62039088, ...
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
g:= proc(n, k) option remember; `if` (n<1, -1,
-add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
end:
A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1;
b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *)
g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *)
a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}];
TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* Shel Kaphan, Mar 14 2023 *)
A195241
Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.
Original entry on oeis.org
1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195605 [incomplete list].
-
m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
-
CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
-
makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
-
Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
A213171
T(n,k) = ((k+n)^2 - 4*k + 3 - (-1)^n - (k+n)*(-1)^(k+n))/2; n, k > 0, read by antidiagonals.
Original entry on oeis.org
1, 4, 5, 2, 3, 6, 9, 10, 13, 14, 7, 8, 11, 12, 15, 18, 19, 22, 23, 26, 27, 16, 17, 20, 21, 24, 25, 28, 31, 32, 35, 36, 39, 40, 43, 44, 29, 30, 33, 34, 37, 38, 41, 42, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 69
Offset: 1
The start of the sequence as a table:
1 4 2 9 7 8 16 ...
5 3 10 8 19 17 32 ...
6 13 11 22 20 35 33 ...
14 12 23 21 36 34 53 ...
15 26 24 39 37 56 54 ...
27 25 40 38 57 55 78 ...
28 43 41 60 58 81 79 ...
...
The start of the sequence as a triangle array read by rows:
1
4 5
2 3 6
9 10 13 14
7 8 11 12 15
18 19 22 23 26 27
16 17 20 21 24 25 28
...
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1
4 5 2 3 6
9 10 13 14 7 8 11 12 15
18 19 22 23 26 27 16 17 20 21 24 25 28
...
Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+6, 2*r*r-5*r+7, ..., 2*r*r-r-4, 2*r*r-r-3, 2*r*r-r.
Cf.
A000384,
A002260,
A003056,
A003057,
A004736,
A014106,
A033566,
A033567,
A033585,
A033816,
A071355,
A091823,
A100037,
A130861,
A130883,
A139271,
A188135,
A194431,
A211377.
-
T:=(n,k)->((k+n)^2-4*k+3-(-1)^n-(k+n)*(-1)^(k+n))/2: seq(seq(T(k,n-k),k=1..n-1),n=1..13); # Muniru A Asiru, Dec 06 2018
-
T[n_, k_] := ((n+k)^2 - 4k + 3 - (-1)^n - (-1)^(n+k)(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-4*j+3-(-1)**i-(t+2)*(-1)**t)/2
A213205
T(n,k) = ((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2; n , k > 0, read by antidiagonals.
Original entry on oeis.org
1, 5, 4, 2, 3, 6, 10, 9, 14, 13, 7, 8, 11, 12, 15, 19, 18, 23, 22, 27, 26, 16, 17, 20, 21, 24, 25, 28, 32, 31, 36, 35, 40, 39, 44, 43, 29, 30, 33, 34, 37, 38, 41, 42, 45, 49, 48, 53, 52, 57, 56, 61, 60, 65, 64, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 70
Offset: 1
The start of the sequence as table:
1....5...2..10...7..19..16...
4....3...9...8..18..17..31...
6...14..11..23..20..36..33...
13..12..22..21..35..34..52...
15..27..24..40..37..57..54...
26..25..39..38..56..55..77...
28..44..41..61..58..82..79...
. . .
The start of the sequence as triangle array read by rows:
1;
5,4;
2,3,6;
10,9,14,13;
7,8,11,12,15;
19,18,23,22,27,26;
16,17,20,21,24,25,28;
. . .
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
5,4,2,3,6;
10,9,14,13,7,8,11,12,15;
19,18,23,22,27,26,16,17,20,21,24,25,28;
. . .
Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+7, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-3, 2*r*r-r.
Cf.
A211377,
A130883,
A100037,
A033816,
A000384,
A091823,
A014106,
A071355,
A130861,
A188135,
A033567,
A033566,
A139271,
A024847,
A033585,
A002260,
A004736,
A003056,
A003057.
-
T:=(n,k)->((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2: seq(seq(T(k,n-k),k=1..n-1),n=1..13); # Muniru A Asiru, Dec 06 2018
-
T[n_, k_] := ((n+k)^2 - 4k + 3 + (-1)^k - 2(-1)^n - (n+k)(-1)^(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t+2)*(-1)**t)/2
Comments