cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A028994 Even 10-gonal (or decagonal) numbers.

Original entry on oeis.org

0, 10, 52, 126, 232, 370, 540, 742, 976, 1242, 1540, 1870, 2232, 2626, 3052, 3510, 4000, 4522, 5076, 5662, 6280, 6930, 7612, 8326, 9072, 9850, 10660, 11502, 12376, 13282, 14220, 15190, 16192, 17226, 18292, 19390, 20520, 21682, 22876, 24102, 25360, 26650, 27972
Offset: 0

Views

Author

Keywords

Comments

a(n) (for n >= 1) is also the Wiener index of the windmill graph D(5, n). The windmill graph D(m, n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e. a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. The Wiener index of D(m, n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(3, n), D(4, n), and D(6, n) see A033991, A152743, and A180577, respectively. - Emeric Deutsch, Sep 21 2010

Crossrefs

Programs

Formula

a(n) = 2*n*(8*n - 3). - Omar E. Pol, Aug 19 2011
G.f.: -2*x*(11*x+5)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=1} 1/a(n) = (8*log(2) - (sqrt(2)-1)*Pi - 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 2*x*(5 + 8*x)*exp(x).
a(n) = 2*A139273(n) = A001107(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024

A180579 The Wiener index of the Dutch windmill graph D(5,n) (n>=1).

Original entry on oeis.org

15, 78, 189, 348, 555, 810, 1113, 1464, 1863, 2310, 2805, 3348, 3939, 4578, 5265, 6000, 6783, 7614, 8493, 9420, 10395, 11418, 12489, 13608, 14775, 15990, 17253, 18564, 19923, 21330, 22785, 24288, 25839, 27438, 29085, 30780, 32523, 34314, 36153, 38040, 39975, 41958, 43989
Offset: 1

Views

Author

Emeric Deutsch, Sep 30 2010

Keywords

Comments

The Dutch windmill graph D(m,n) (also called friendship graph) is the graph obtained by taking n copies of the cycle graph C_m with a vertex in common (i.e., a bouquet of n C_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

Examples

			a(1)=15 because in D(5,1)=C_5 we have 5 distances equal to 1 and 5 distances equal to 2.
		

Crossrefs

Programs

  • Maple
    seq(3*n*(8*n-3), n = 1 .. 40);
  • Mathematica
    Table[3n(8n-3),{n,40}] (* or *) LinearRecurrence[{3,-3,1},{15,78,189},40] (* Harvey P. Dale, May 01 2023 *)
  • PARI
    a(n)=3*n*(8*n-3) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 3*n*(8*n-3).
a(n) = A180867(4,n).
The Wiener polynomial of the graph D(5,n) is nt(t+1)[2(n-1)t^2+2(n-1)t+5].
G.f.: -3*x*(11*x+5)/(x-1)^3. - Colin Barker, Oct 31 2012
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 3*exp(x)*x*(5 + 8*x).
a(n) = 3*A139273(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A304659 a(n) = n*(n + 1)*(16*n - 1)/6.

Original entry on oeis.org

0, 5, 31, 94, 210, 395, 665, 1036, 1524, 2145, 2915, 3850, 4966, 6279, 7805, 9560, 11560, 13821, 16359, 19190, 22330, 25795, 29601, 33764, 38300, 43225, 48555, 54306, 60494, 67135, 74245, 81840, 89936, 98549, 107695, 117390, 127650, 138491, 149929, 161980, 174660, 187985
Offset: 0

Views

Author

Bruno Berselli, May 22 2018

Keywords

Crossrefs

Cf. A007742, A076455, A139273 (first differences).
First lower diagonal of the rectangular array in A213835.

Programs

  • Magma
    [n*(n+1)*(16*n-1)/6: n in [0..41]]; // Vincenzo Librandi, May 23 2018
    
  • Mathematica
    Table[n (n + 1) (16 n - 1)/6, {n, 0, 50}]
  • PARI
    concat(0, Vec(x*(5 + 11*x) / (1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018

Formula

O.g.f.: x*(5 + 11*x)/(1 - x)^4.
E.g.f.: x*(30 + 63*x + 16*x^2)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) + a(-n) = A033429(n).
a(n) = n*A007742(n) - Sum_{k = 0..n-1} A007742(k) for n > 0.
Also, this sequence is related to A076455 by the same type of recurrence:
A076455(n) = n*a(n) - Sum_{k = 0..n-1} a(k) for n > 0.
Previous Showing 11-16 of 16 results.