cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A139272 a(n) = n*(8*n-5).

Original entry on oeis.org

0, 3, 22, 57, 108, 175, 258, 357, 472, 603, 750, 913, 1092, 1287, 1498, 1725, 1968, 2227, 2502, 2793, 3100, 3423, 3762, 4117, 4488, 4875, 5278, 5697, 6132, 6583, 7050, 7533, 8032, 8547, 9078, 9625, 10188, 10767, 11362, 11973, 12600
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139276 in the same spiral.

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=16: see Comments lines of A226492.

Programs

Formula

a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A139222 a(n) = 30*n - 27.

Original entry on oeis.org

3, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513, 543, 573, 603, 633, 663, 693, 723, 753, 783, 813, 843, 873, 903, 933, 963, 993, 1023, 1053, 1083, 1113, 1143, 1173, 1203, 1233, 1263, 1293, 1323, 1353, 1383, 1413, 1443, 1473
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 3 with the units digit equal to 3.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139245, A017329, A139249, A139264, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 3*x*(1+9*x)/(1-x)^2.
E.g.f.: 3*(exp(x)*(10*x - 9) + 9).
a(n) = 3*A017281(n-1) = A139280(n)/3.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139249 a(n) = 30*n - 24.

Original entry on oeis.org

6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996, 1026, 1056, 1086, 1116, 1146, 1176, 1206, 1236, 1266, 1296, 1326, 1356, 1386, 1416, 1446, 1476
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008, Jun 07 2008

Keywords

Comments

Multiples of 6 with unit digit equal to 6.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139264, A139279 and A139280. - Reinhard Zumkeller, Jun 22 2008
Cf. A016861.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 6*x*(1+4*x)/(1-x)^2.
E.g.f.: 6*(exp(x)*(5*x - 4) + 4).
a(n) = 6*A016861(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
Edited by R. J. Mathar, Jul 20 2008

A139264 a(n) = 70*n - 63.

Original entry on oeis.org

7, 77, 147, 217, 287, 357, 427, 497, 567, 637, 707, 777, 847, 917, 987, 1057, 1127, 1197, 1267, 1337, 1407, 1477, 1547, 1617, 1687, 1757, 1827, 1897, 1967, 2037, 2107, 2177, 2247, 2317, 2387, 2457, 2527, 2597, 2667, 2737, 2807, 2877, 2947, 3017, 3087, 3157, 3227
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 7 with unit digit equal to 7.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 70.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 7*x*(1+9*x)/(1-x)^2.
E.g.f.: 7*(exp(x)*(10*x - 9) + 9).
a(n) = 7*A017281(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024
Previous Showing 11-17 of 17 results.