cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A299475 a(n) is the number of vertices in the diagram of partitions of n (see example).

Original entry on oeis.org

1, 4, 7, 10, 16, 22, 34, 46, 67, 91, 127, 169, 232, 304, 406, 529, 694, 892, 1156, 1471, 1882, 2377, 3007, 3766, 4726, 5875, 7309, 9031, 11155, 13696, 16813, 20527, 25048, 30430, 36931, 44650, 53932, 64912, 78046, 93556, 112015, 133750, 159523, 189784, 225526, 267403, 316675, 374263, 441820, 520576, 612679
Offset: 0

Views

Author

Omar E. Pol, Feb 11 2018

Keywords

Comments

For n >= 1, A299474(n) is the number of edges and A000041(n) is the number of regions in the mentioned diagram (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     7      10        16          22            34     (vertices)
A299474(n):   4     8      12        20          28            44     (edges)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==0, 1, 1+3*numbpart(n)); \\ Michel Marcus, Jul 15 2018

Formula

a(0) = 1; a(n) = 1 + 3*A000041(n), n >= 1.
a(n) = A299474(n) - A000041(n) + 1, n >= 1 (Euler's formula).

A179862 An unrestricted partition statistic: sum of A179864 over row n.

Original entry on oeis.org

1, 4, 9, 19, 33, 59, 93, 150, 226, 342, 494, 721, 1011, 1425, 1960, 2695, 3633, 4903, 6506, 8633, 11312, 14796, 19157, 24773, 31744, 40608, 51578, 65372, 82341, 103522, 129428, 161505, 200589, 248614, 306869, 378051, 463987, 568387, 693989, 845754, 1027625
Offset: 1

Views

Author

Alford Arnold, Aug 02 2010

Keywords

Comments

Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n minus the number of partitions of n. - Omar E. Pol, Jul 15 2013
Sum of the hook-lengths of the (1,1)-cells of the Ferrers diagrams over all partitions of n. Example: a(3) = 9 because in each of the partitions 3, 21, and 111 the (1,1)-cell has hook-length 3. Comment follows at once from the previous comment. - Emeric Deutsch, Dec 20 2015

Examples

			From _Omar E. Pol_, Jul 15 2013: (Start)
Illustration of initial terms using a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). a(n) is the x-coordinate of the mentioned largest peak. Note that this Dyck path is infinite.
.
7..................................
.                                 /\
5....................            /  \                /\
.                   /\          /    \          /\  /
3..........        /  \        /      \        /  \/
2.....    /\      /    \    /\/        \      /
1..  /\  /  \  /\/      \  /            \  /\/
0 /\/  \/    \/          \/              \/
. 0,2,  6,   12,         24,             40... = A211978
.  1, 4,   9,       19,           33... = this sequence (End)
		

Crossrefs

Cf. A179864.

Formula

a(n) = Sum_{k=1..A000041(n)} A179864(n,k).
a(n) = A211978(n) - A000041(n). - Omar E. Pol, Jul 15 2013
a(n) = A225600(A139582(n)-1), n>= 1. - Omar E. Pol, Jul 25 2013

Extensions

More terms from Omar E. Pol, Jul 15 2013

A304789 Number T(n,k) of partitions of 2n whose Ferrers-Young diagram allows exactly k different domino tilings; triangle T(n,k), n>=0, 0<=k<=A304790(n), read by rows.

Original entry on oeis.org

0, 1, 0, 2, 0, 4, 1, 1, 6, 2, 2, 2, 10, 3, 4, 1, 2, 6, 14, 4, 6, 4, 4, 0, 2, 2, 12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2, 25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2, 46, 44, 7, 12, 17, 14, 8, 8, 8, 0, 4, 12, 5, 6, 0, 8, 2, 0, 8, 4, 0, 4, 0, 0, 0, 2, 2, 0, 0, 4, 1, 2, 0, 0, 2, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 18 2018

Keywords

Examples

			T(2,2) = 1: 22.
T(3,0) = 1: 321.
T(3,1) = 6: 111111, 21111, 3111, 411, 51, 6.
T(3,2) = 2: 2211, 42.
T(3,3) = 2: 222, 33.
T(8,36) = 1: 4444.
Triangle T(n,k) begins:
   0,  1;
   0,  2;
   0,  4, 1;
   1,  6, 2,  2;
   2, 10, 3,  4,  1,  2;
   6, 14, 4,  6,  4,  4, 0, 2, 2;
  12, 22, 5,  8,  7,  6, 2, 4, 4, 0, 0, 4, 1, 2;
  25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2;
		

Crossrefs

Columns k=0-1 give: A304710, A139582(n) = 2*A000041(n) for n>0.
Row sums give A058696(n) or A000041(2n).

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> x^`if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
              `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
    seq(T(n), n=0..11);

Formula

Sum_{k>0} k * T(n,k) = A304662(n).
T(n,A304790(n)) = 1 for n in { A001105 }.
Sum_{k>=0} T(n,k) = A058696(n) = A000041(2n).
Sum_{k>=1} T(n,k) = A000712(n).
Sum_{k>=2} T(n,k) = A048574(n) = A052837(n).

A211026 Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1

Views

Author

Omar E. Pol, Oct 29 2012

Keywords

Comments

On the infinite square grid the diagram of regions of the set of partitions of n is represented by a rectangle with base = n and height = A000041(n). The rectangle contains n shells. Each shell contains regions. Each row of a region is a part. Each part of size k contains k cells. The number of regions equals the number of partitions of n (see illustrations in the links section). For a minimalist version see A139582. For the definition of "region of n" see A206437.

Crossrefs

Formula

a(n) = 2*A000041(n) + 2 = 2*A052810(n) = A139582(n) + 2.

Extensions

a(18) corrected by Georg Fischer, Apr 11 2024

A228109 Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0

Views

Author

Omar E. Pol, Aug 13 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 5, the diagram 1 represents the partitions of 5. The diagram 2 shows separately the boundary segments southwest sides of the first seven regions of the diagram 1, see below:
.
j Diagram 1 Diagram 2
7 | _ | | _
6 | _| | | _ |
5 | | | | |
4 | |_ | | | |_ |
3 | | | | | | |
2 | | | | | | | | |
1 |||_||| | | | | |_
.
. 1 2 3 4 5
.
a(n) is the height after n-th step of an infinite staircase which is the lower part of a diagram of regions of the set of partitions of all positive integers. The upper part of the diagram is the infinite Dyck path mentioned in A228110. The diagram shows the shape of the successive regions of the set of partitions of all positive integers. The area of the n-th region is A186412(n).
For the height of the peaks and the valleys in the infinite Dyck path see A229946.

Examples

			Illustration of initial terms (n = 1..53):
5
4                                                      /
3                                 /\/\                /
2                                /    \            /\/
1                   /\/\      /\/      \        /\/
0          /\    /\/    \    /          \    /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
.                                  /\
5.....................            /  \                /\
.                    /\          /    \          /\  / /
3...........        /  \        / /\/\ \        /  \/ /
2......    /\      /    \    /\/ /    \ \      /   /\/
1...  /\  /  \  /\/ /\/\ \  / /\/      \ \  /\/ /\/
0  /\/  \/ /\ \/ /\/    \ \/ /          \ \/ /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
.
Region:
.   1  2    3   4     5      6      7       8    9   10
		

Crossrefs

A228110 Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Aug 10 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The sequence gives the height of the infinite Dyck path after n-th step.
The absolute values of the first differences give A000012.
For the height of the peaks and the valleys in the infinite Dyck path see A229946.
Q: Is this infinite Dyck path a fractal?

Examples

			Illustration of initial terms (n = 1..59):
.
11 ...........................................................
.                                                            /
.                                                           /
.                                                          /
7 ..................................                      /
.                                  /\                    /
5 ....................            /  \                /\/
.                    /\          /    \          /\  /
3 ..........        /  \        /      \        /  \/
2 .....    /\      /    \    /\/        \      /
1 ..  /\  /  \  /\/      \  /            \  /\/
.  /\/  \/    \/          \/              \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
		

Crossrefs

Column 1 is A000004. Both column 2 and the right border are in A000012. Both columns 3 and 5 are in A007395.

A229946 Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 2, 1, 5, 0, 3, 2, 7, 0, 2, 1, 5, 3, 6, 5, 11, 0, 3, 2, 7, 5, 9, 8, 15, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 0, 3, 2, 7, 5, 9, 8, 15, 11, 14, 13, 19, 17, 22, 21, 30, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 15, 19, 18, 25, 23, 29, 28, 33, 32, 42, 0
Offset: 0

Views

Author

Omar E. Pol, Nov 03 2013

Keywords

Comments

Also 0 together the alternating sums of A220517.
The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The height of the peaks and the valleys of the infinite Dyck path give this sequence.
Q: Is this Dyck path a fractal?

Examples

			Illustration of initial terms (n = 0..21):
.                                                             11
.                                                             /
.                                                            /
.                                                           /
.                                   7                      /
.                                   /\                 6  /
.                     5            /  \           5    /\/
.                     /\          /    \          /\  / 5
.           3        /  \     3  /      \        /  \/
.      2    /\   2  /    \    /\/        \   2  /   3
.   1  /\  /  \  /\/      \  / 2          \  /\/
.   /\/  \/    \/ 1        \/              \/ 1
.  0 0   0     0           0               0
.
Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0.
.
Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins:
0,1;
0,2;
0,3;
0,2,1,5;
0,3,2,7;
0,2,1,5,3,6,5,11;
0,3,2,7,5,9,8,15;
0,2,1,5,3,6,5,11,7,12,11,15,14,22;
0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30;
0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42;
...
		

Crossrefs

Column 1 is A000004. Right border gives A000041 for the positive integers.

Formula

a(0) = 0; a(n) = a(n-1) + (-1)^(n-1)*A220517(n), n >= 1.

A233968 Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1.

Original entry on oeis.org

2, 4, 6, 12, 16, 30, 38, 64, 84, 128, 166, 248, 314, 448, 576, 790, 1004, 1358, 1708, 2264, 2844, 3694, 4614, 5936, 7354, 9342, 11544, 14502, 17816, 22220, 27144, 33584, 40878, 50192, 60828, 74276, 89596, 108778, 130772, 157918, 189116, 227374
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2014

Keywords

Comments

Also first differences of A211978.

Examples

			Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _      |   |   |
.                             _ _ _    |             |
.                   _ _ _ _        |   |             |
.                   _ _    |           |             |
.           _ _ _      |   |           |             |
.     _ _        |         |           |             |
. _      |       |         |           |             |
.  |     |       |         |           |             |
.
. 2    4      6       12          16          30
.
Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
7..................................
.                                 /\
5....................            /  \                /\
.                   /\          /    \          /\  /
3..........        /  \        /      \        /  \/
2.....    /\      /    \    /\/        \      /
1..  /\  /  \  /\/      \  /            \  /\/
0 /\/  \/    \/          \/              \/
.  2, 4,   6,       12,           16,...
.
		

Crossrefs

Formula

a(n) = 2*(A006128(n) - A006128(n-1)) = 2*A138137(n).

A262445 Number of exact 3-colored partitions such that no adjacent parts have the same color.

Original entry on oeis.org

0, 0, 0, 6, 24, 72, 186, 438, 990, 2142, 4560, 9492, 19620, 40068, 81534, 164892, 332808, 669528, 1345554, 2699448, 5412636, 10843038, 21714972, 43467342, 86995428, 174069306, 348265164, 696694692, 1393652298, 2787646380, 5575837836, 11152384044, 22305891948, 44613248352, 89228806704, 178460625402, 356925987924
Offset: 0

Views

Author

Ran Pan, Sep 23 2015

Keywords

Comments

a(1) = a(2) = 0 because we need to use exactly three colors, which means the number of parts should be greater than two.
All terms are multiples of 6.

Examples

			a(3)=6 because there are three partitions of 3 and there are no ways to color [3] or [2,1] but there are six ways to color [1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    a:= n-> `if`(n=0, 0, b(n$2, 2)/2*3-6*b(n$2, 1)+3):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 23 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]]; a[n_] := If[n == 0, 0, b[n, n, 2]/2*3 - 6*b[n, n, 1] + 3]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)

Formula

G.f.: 3/2*Product_{k>=1} (1/(1-2*x^k)) - 6*Product_{k>=1} (1/(1-x^k)) + 3/(1-x) + 3/2.
a(n) = A262444(n) - 6*A000041(n) + 3, for n >= 1.
a(n) = 6 * A262495(n,3). - Alois P. Heinz, Sep 24 2015

A299473 a(n) = 3*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

3, 3, 6, 9, 15, 21, 33, 45, 66, 90, 126, 168, 231, 303, 405, 528, 693, 891, 1155, 1470, 1881, 2376, 3006, 3765, 4725, 5874, 7308, 9030, 11154, 13695, 16812, 20526, 25047, 30429, 36930, 44649, 53931, 64911, 78045, 93555, 112014, 133749, 159522, 189783, 225525, 267402, 316674, 374262, 441819, 520575, 612678
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of vertices in the minimalist diagram of partitions of n, in which A139582(n) is the number of line segments and A000041(n) is the number of open regions (see example).

Examples

			Construction of a minimalist version of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
-----------------------------------------------------------------------------------
n.........:    1     2       3         4           5           6   (stage)
A000041(n):    1     2       3         5           7          11   (open regions)
A139582(n):    2     4       6        10          14          22   (line segments)
a(n)......:    3     6       9        15          21          33   (vertices)
-----------------------------------------------------------------------------------
r     p(n)
-----------------------------------------------------------------------------------
.
1 .... 1 .... _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |
2 .... 2 ......... _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |
3 .... 3 ................ _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |
4                                  _ _|   |   _ _|   | |   _ _|   | | |
5 .... 5 ......................... _ _ _ _|   _ _ _ _| |   _ _ _ _| | |
6                                             _ _ _|   |   _ _ _|   | |
7 .... 7 .................................... _ _ _ _ _|   _ _ _ _ _| |
8                                                          _ _|   |   |
9                                                          _ _ _ _|   |
10                                                         _ _ _|     |
11 .. 11 ................................................. _ _ _ _ _ _|
.
The r-th horizontal line segment has length A141285(r).
The r-th vertical line segment has length A194446(r).
An infinite diagram is a minimalist table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), this sequence (k=3), A299474 (k=4).

Formula

a(n) = 3*A000041(n) = A000041(n) + A139582(n).
a(n) = A299475(n) - 1, n >= 1.
Previous Showing 11-20 of 22 results. Next