A098737
Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.
Original entry on oeis.org
1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1
Eugene McDonnell (eemcd(AT)mac.com), Oct 29 2004
f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8.
The triangle f(m, n) starts:
m\n 1 2 3 4 5 6 7 8 9 10 11 ...
1: 1
2: 3 8
3: 6 15 27
4: 10 24 42 64
5: 15 35 60 90 125
6: 21 48 81 120 165 216
7: 28 63 105 154 210 273 343
8: 36 80 132 192 260 336 420 512
9: 45 99 162 234 315 405 504 612 729
10: 55 120 195 280 375 480 595 720 855 1000
11: 66 143 231 330 440 561 693 836 990 1155 1331
... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
- Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.
-
cap half * * +
-
t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)
A277978
a(n) = 3*n*(n+3).
Original entry on oeis.org
0, 12, 30, 54, 84, 120, 162, 210, 264, 324, 390, 462, 540, 624, 714, 810, 912, 1020, 1134, 1254, 1380, 1512, 1650, 1794, 1944, 2100, 2262, 2430, 2604, 2784, 2970, 3162, 3360, 3564, 3774, 3990, 4212, 4440, 4674, 4914, 5160, 5412, 5670, 5934, 6204, 6480
Offset: 0
a(3) = 54. Indeed, the wheel graph with 4 vertices consists of 6 edges, each connecting two vertices of degree 3. Then, the second Zagreb index is 6*3*3 = 54.
A279895
a(n) = n*(5*n + 11)/2.
Original entry on oeis.org
0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0
The first differences are in
A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number:
A008585 (s=2),
A055999 (s=3),
A028347 (s=4),
A140091 (s=5),
A033537 (s=6), this sequence (s=7),
A067725 (s=8).
-
[n*(5*n+11)/2: n in [0..60]];
-
Table[n (5 n + 11)/2, {n, 0, 60}]
LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
-
vector(60, n, n--; n*(5*n+11)/2)
-
[n*(5*n+11)/2 for n in range(60)]
-
[n*(5*n+11)/2 for n in range(60)]
A370238
a(n) = n*(3*n + 23)/2.
Original entry on oeis.org
0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0
Cf.
A000326,
A000566,
A008594,
A005449,
A045943,
A059845,
A115067,
A140090,
A140091,
A140672,
A140673,
A140674,
A140675,
A151542,
A277976.
-
Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
-
def a(n): return n*(3*n+23)//2
A237444
Triangle read by rows, T(n,k) is difference of column sum and row sum of natural numbers filled in n x n square.
Original entry on oeis.org
0, 1, -1, 6, 0, -6, 18, 6, -6, -18, 40, 20, 0, -20, -40, 75, 45, 15, -15, -45, -75, 126, 84, 42, 0, -42, -84, -126, 196, 140, 84, 28, -28, -84, -140, -196, 288, 216, 144, 72, 0, -72, -144, -216, -288, 405, 315, 225, 135, 45, -45, -135, -225, -315, -405, 550, 440, 330, 220, 110, 0, -110, -220, -330, -440, -550, 726, 594, 462, 330, 198, 66, -66
Offset: 1
Triangle begins:
n/k 1 2 3 4 5 6 7 8 9 ...
1 0
2 1 -1
3 6 0 -6
4 18 6 -6 18
5 40 20 0 -20 -40
6 75 45 15 -15 -45 -75
7 126 84 42 0 -42 -84 -126
8 196 140 84 28 -28 -84 -140 -196
9 288 216 144 72 0 -72 -144 -216 -288 ...
...
A082375 begins:
0;
1;
2, 0;
3, 1;
4, 2, 0;
5, 3, 1;
6, 4, 2, 0;
7, 5, 3, 1;
8, 6, 4, 2, 0;
9, 7, 5, 3, 1;
.....
A000217 (triangular numbers) begins:
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
A082375(n,k)*A000217(n) begins:
0;
1;
6, 0;
18, 6;
40, 20, 0;
75, 45, 15;
126, 84, 42, 0;
196, 140, 84, 28;
288, 216, 144, 72, 0;
405, 315, 225, 135, 45;
... - _Philippe Deléham_, Feb 08 2014
A248093
Triangle read by rows: TR(n,k) is the number of unordered vertex pairs at distance k of the hexagonal triangle T_n, defined in the He et al. reference (1<=k<=2n+1).
Original entry on oeis.org
1, 0, 6, 6, 6, 3, 13, 15, 21, 21, 15, 6, 22, 27, 42, 48, 45, 36, 24, 9, 33, 42, 69, 84, 87, 81, 69, 51, 33, 12, 46, 60, 102, 129, 141, 141, 132, 114, 93, 66, 42, 15, 61, 81, 141, 183, 207, 216, 213, 198, 177, 147, 117, 81, 51, 18, 78, 105, 186, 246, 285
Offset: 0
Row n=1 is 6, 6, 6, 3; indeed, T_1 is a hexagon ABCDEF; it has 6 distances equal to 0 (= number of vertices), 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF).
Triangle starts:
1, 0;
6, 6, 6, 3;
13, 15, 21, 21, 15, 6;
22, 27, 42, 48, 45, 36, 24, 9;
33, 42, 69, 84, 87, 81, 69, 51, 33, 12;
-
G := (1+(3+6*t+4*t^2+3*t^3)*z-(1+t+2*t^2)*(2+t-2*t^2)*z^2+t^2*(1-3*t^2)*z^3+t^4*z^4)/((1-z)^3*(1-t^2*z)^2): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, j), j = 0 .. 2*n+1) end do; # yields sequence in triangular form
Comments