cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A098737 Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.

Original entry on oeis.org

1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Oct 29 2004

Keywords

Comments

Frank Buss gave this as a puzzle; K. L. Metlov solved it, submitting his result in the J language created by Kenneth Iverson. The program given below is only five tokens long. J defines a series of three functions to be a "fork" defined by x (f g h ) y = (x f y) g (f h y) - a generalization of the usual mathematical practice of writing (f + g) y to mean (f y) + (g y). J also has a primitive "half" and has a dummy function "cap" whose purpose is to permit more forks to be written. 3 (* * +) 5 is thus (3 * 5) * (3 + 5) or 120. cap half 3 (* * +) 5 is thus 60.
This sequence is the dimensions of the various irreducible representations of SU(3). In the language of physics, the integers m and n are one more than the numbers of quarks or antiquarks, respectively, that label the representation. - Alex Meiburg, Dec 13 2020 =
Comment on the previous one: D(n, m) = f(m+1, n+1) = (n+1)*(m+1)*(n+m+2), for 0 <= m <= n, (given as array D(n,m) as example in A212331) is the dimension of the irreducible SU(3) multiplet (n, m), denoted also by D(n, m). The multiplet (m, n) is denoted also by a bar over D(n, m). The irreducuble tensor t(n, m) is symmetric in n upper indices from {1,2,3}, symmetric in m lower indices, and traceless in every pair of an upper and a lower index. See the Coleman reference for a derivation. - Wolfdieter Lang, Dec 18 2020

Examples

			f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8.
The triangle f(m, n) starts:
m\n     1   2   3   4   5   6   7   8   9   10   11 ...
1:      1
2:      3   8
3:      6  15  27
4:     10  24  42  64
5:     15  35  60  90 125
6:     21  48  81 120 165 216
7:     28  63 105 154 210 273 343
8:     36  80 132 192 260 336 420 512
9:     45  99 162 234 315 405 504 612 729
10:    55 120 195 280 375 480 595 720 855 1000
11:    66 143 231 330 440 561 693 836 990 1155 1331
... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
		

References

  • Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.

Crossrefs

Cf. A000217, A005563, A140091, A067728, A212331, A140681 (columns), A000578, A059270, A331433 (diagonals).
(diagonal).
See also A107985, A212331 (array as example).

Programs

  • J
    cap half * * +
  • Mathematica
    t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)

Formula

f(m, n) = 1/2 * (m * n) * (m + n).
G.f.: x*y*(1 + 4*x*y + x^2*(y - 9)*y - 3*x^3*(y - 1)*y + 3*x^4*y^2)/((1 - x)^3*(1 - x*y)^4). - Stefano Spezia, Oct 01 2023

Extensions

More terms from Robert G. Wilson v, Nov 04 2004

A277978 a(n) = 3*n*(n+3).

Original entry on oeis.org

0, 12, 30, 54, 84, 120, 162, 210, 264, 324, 390, 462, 540, 624, 714, 810, 912, 1020, 1134, 1254, 1380, 1512, 1650, 1794, 1944, 2100, 2262, 2430, 2604, 2784, 2970, 3162, 3360, 3564, 3774, 3990, 4212, 4440, 4674, 4914, 5160, 5412, 5670, 5934, 6204, 6480
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2016

Keywords

Comments

For n>= 3, a(n) is the second Zagreb index of the wheel graph with n+1 vertices. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of g.

Examples

			a(3) = 54. Indeed, the wheel graph with 4 vertices consists of 6 edges, each connecting two vertices of degree 3. Then, the second Zagreb index is 6*3*3 = 54.
		

Crossrefs

Programs

Formula

a(n) = 2 * A140091(n) = 3 * A028552(n) = 6 * A000096(n).
G.f.: 6*x*(2-x)/(1-x)^3
a(n) = A003154(n+1) - A003215(n-1). See Hexagonal Stars illustration. - Leo Tavares, Aug 20 2021

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024

A237444 Triangle read by rows, T(n,k) is difference of column sum and row sum of natural numbers filled in n x n square.

Original entry on oeis.org

0, 1, -1, 6, 0, -6, 18, 6, -6, -18, 40, 20, 0, -20, -40, 75, 45, 15, -15, -45, -75, 126, 84, 42, 0, -42, -84, -126, 196, 140, 84, 28, -28, -84, -140, -196, 288, 216, 144, 72, 0, -72, -144, -216, -288, 405, 315, 225, 135, 45, -45, -135, -225, -315, -405, 550, 440, 330, 220, 110, 0, -110, -220, -330, -440, -550, 726, 594, 462, 330, 198, 66, -66
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 08 2014

Keywords

Comments

See illustration in links for construction rule.
Column 1 = A002411.
Column 2 = A005564 ,for n >= 3.
Column 3 first differences = A140091.
Nonnegative numbers of this sequence are given by A082375(n,k)*A000217(n), (see example). - Philippe Deléham, Feb 08 2014

Examples

			Triangle begins:
n/k   1   2   3   4  5    6   7    8    9   ...
1   0
2   1  -1
3   6   0  -6
4  18   6  -6  18
5  40  20   0 -20 -40
6  75  45  15 -15 -45 -75
7 126  84  42   0 -42 -84 -126
8 196 140  84  28 -28 -84 -140 -196
9 288 216 144  72   0 -72 -144 -216 -288  ...
...
A082375 begins:
0;
1;
2, 0;
3, 1;
4, 2, 0;
5, 3, 1;
6, 4, 2, 0;
7, 5, 3, 1;
8, 6, 4, 2, 0;
9, 7, 5, 3, 1;
.....
A000217 (triangular numbers) begins:
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
A082375(n,k)*A000217(n) begins:
0;
1;
6, 0;
18, 6;
40, 20, 0;
75, 45, 15;
126, 84, 42, 0;
196, 140, 84, 28;
288, 216, 144, 72, 0;
405, 315, 225, 135, 45;
... - _Philippe Deléham_, Feb 08 2014
		

Crossrefs

Formula

T(n,k) = - T(n,n-k+1), T(2n+1,n+1)= 0. - Philippe Deléham, Feb 08 2014
T(n+1,k+1) = A114327(n,k)*A000217(n). - Philippe Deléham, Feb 08 2014

A248093 Triangle read by rows: TR(n,k) is the number of unordered vertex pairs at distance k of the hexagonal triangle T_n, defined in the He et al. reference (1<=k<=2n+1).

Original entry on oeis.org

1, 0, 6, 6, 6, 3, 13, 15, 21, 21, 15, 6, 22, 27, 42, 48, 45, 36, 24, 9, 33, 42, 69, 84, 87, 81, 69, 51, 33, 12, 46, 60, 102, 129, 141, 141, 132, 114, 93, 66, 42, 15, 61, 81, 141, 183, 207, 216, 213, 198, 177, 147, 117, 81, 51, 18, 78, 105, 186, 246, 285
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2014

Keywords

Comments

Number of entries in row n is 2*n+2.
The entries in row n are the coefficients of the Hosoya polynomial of T_n.
TR(n,0) = A028872(n+2) = number of vertices of T_n.
TR(n,1) = A140091(n) = number of edges of T_n.
sum(j*TR(n,j), j=0..2n+1) = A033544(n) = the Wiener index of T_n.
(1/2)*sum(j*(j+1)TR(n,j), j=0..2n+1) = A248094(n) = the hyper-Wiener index of T_n.
sum((-1)^j*TR(n,j), j=0..2n+1) = A002061(n). - Peter Luschny, Nov 15 2014

Examples

			Row n=1 is 6, 6, 6, 3; indeed, T_1 is a hexagon ABCDEF; it has 6 distances equal to 0 (= number of vertices), 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF).
Triangle starts:
1, 0;
6, 6, 6, 3;
13, 15, 21, 21, 15, 6;
22, 27, 42, 48, 45, 36, 24, 9;
33, 42, 69, 84, 87, 81, 69, 51, 33, 12;
		

Crossrefs

Programs

  • Maple
    G := (1+(3+6*t+4*t^2+3*t^3)*z-(1+t+2*t^2)*(2+t-2*t^2)*z^2+t^2*(1-3*t^2)*z^3+t^4*z^4)/((1-z)^3*(1-t^2*z)^2): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, j), j = 0 .. 2*n+1) end do; # yields sequence in triangular form

Formula

G.f.: (1 + (3 + 6*t + 4*t^2 + 3*t^3)*z - (1 + t + 2*t^2)*(2 + t - 2*t^2)*z^2 +t^2*(1 - 3*t^2)*z^3 + t^4*z^4)/((1-z)^3*(1 - t^2*z^2)^2); follows from Theorem 3.6 of the He et al. reference.
Previous Showing 21-26 of 26 results.