A254367
a(n) = 5*2^(n+2) + 2^(2n+2) + 10*3^n + 5^n + 35.
Original entry on oeis.org
70, 126, 294, 846, 2814, 10326, 40614, 168126, 723534, 3208806, 14570934, 67417806, 316645854, 1505245686, 7225414854, 34956689886, 170199537774, 832952952966, 4093454620374, 20184631056366, 99800366967294, 494533989722646, 2454868429675494
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas, page 2.
- Luciano Ancora, Recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
-
[5*2^(n+2)+2^(2*n+2)+10*3^n+5^n+35: n in [0..30]]; // Vincenzo Librandi, Feb 02 2015
-
Table[5 2^(n + 2) + 2^(2 n + 2) + 10 3^n + 5^n + 35, {n, 0, 30}] (* Vincenzo Librandi, Feb 02 2015 *)
-
vector(30, n, n--; 5*2^(n+2) + 2^(2*n+2) + 10*3^n + 5^n + 35) \\ Colin Barker, Jan 30 2015
A242475
a(n) = 2^n + 8.
Original entry on oeis.org
9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0
-
[2^n+8: n in [0..40]];
-
Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)
A246139
a(n) = 2^n + 10.
Original entry on oeis.org
11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0
Cf. Sequences of the form 2^n + k:
A000079 (k=0),
A000051 (k=1),
A052548 (k=2),
A062709 (k=3),
A140504 (k=4),
A168614 (k=5),
A153972 (k=6),
A168415 (k=7),
A242475 (k=8),
A188165 (k=9), this sequence (k=10).
-
[2^n+10: n in [0..40]];
-
Table[2^n + 10, {n, 0, 40}]
-
vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014
A140505
Second differences of Jacobsthal sequence A001045, pairs with even and odd indices swapped.
Original entry on oeis.org
2, -1, 4, 0, 12, 4, 44, 20, 172, 84, 684, 340, 2732, 1364, 10924, 5460, 43692, 21844, 174764, 87380, 699052, 349524, 2796204, 1398100, 11184812, 5592404, 44739244, 22369620, 178956972, 89478484, 715827884, 357913940, 2863311532, 1431655764, 11453246124
Offset: 0
A254465
a(n) = 35*2^n + 10*4^n + 20*3^n + 4*5^n + 6^n + 56.
Original entry on oeis.org
126, 252, 672, 2232, 8592, 36552, 166992, 804552, 4037712, 20923272, 111231312, 603667272, 3331889232, 18646768392, 105558814032, 603280840392, 3475274371152, 20152803339912, 117513698083152, 688425727971912, 4048693055291472, 23888489018765832, 141334996634766672, 838119509472869832
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas, page 2.
- Luciano Ancora, Recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
-
Table[35 2^n + 10 4^n + 20 3^n + 4 5^n + 6^n + 56, {n, 0, 24}] (* Michael De Vlieger, Jan 31 2015 *)
LinearRecurrence[{21,-175,735,-1624,1764,-720},{126,252,672,2232,8592,36552},30] (* Harvey P. Dale, Aug 02 2024 *)
-
vector(30, n, n--; 35*2^n + 10*4^n + 20*3^n + 4*5^n + 6^n + 56) \\ Colin Barker, Jan 31 2015
A254466
a(n) = 56*2^n + 20*4^n + 35*3^n + 4*6^n + 10*5^n + 7^n + 84.
Original entry on oeis.org
210, 462, 1386, 5214, 22770, 110022, 571626, 3136014, 17944290, 106156182, 645091866, 4006997214, 25344197010, 162737255142, 1058251916106, 6955456112814, 46130658756930, 308314670926902, 2074188361172346, 14032607275346814, 95392686703000050
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Demonstration of formulas, page 2.
- Luciano Ancora, Recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
-
Table[56 2^n + 20 4^n + 35 3^n + 4 6^n + 10 5^n + 7^n + 84, {n, 0, 24}] (* Michael De Vlieger, Jan 31 2015 *)
-
vector(30, n, n--; 56*2^n + 20*4^n + 35*3^n + 4*6^n + 10*5^n + 7^n + 84) \\ Colin Barker, Jan 31 2015
A295077
a(n) = 2*n*(n-1) + 2^n - 1.
Original entry on oeis.org
0, 1, 7, 19, 39, 71, 123, 211, 367, 655, 1203, 2267, 4359, 8503, 16747, 33187, 66015, 131615, 262755, 524971, 1049335, 2097991, 4195227, 8389619, 16778319, 33555631, 67110163, 134219131, 268436967, 536872535, 1073743563, 2147485507
Offset: 0
a(4) = 39. The corresponding words are aabb, aabd, aadb, aadd, abab, abad, abba, abda, adab, adad, adba, adda, aaac, aaca, aacc, acaa, acac, acca, accc, baab, baad, baba, bada, bbaa, bdaa, caaa, caac, caca, cacc, ccaa, ccac, ccca, cccc, daab, daad, daba, dada, dbaa, ddaa.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..70 from Franck Maminirina Ramaharo)
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2)
-
[2*n*(n-1)+2^n-1 : n in [0..40]]; // Wesley Ivan Hurt, Nov 26 2017
-
A295077:=n->2*n*(n-1)+2^n-1; seq(A295077(n), n=0..70);
-
Table[2 n (n - 1) + 2^n - 1, {n, 0, 70}]
-
a(n) = 2*n*(n-1) + 2^n - 1; \\ Michel Marcus, Nov 14 2017
A146528
a(0) = 4; for n >= 1, a(n) = 2^n + 4.
Original entry on oeis.org
4, 6, 8, 12, 20, 36, 68, 132, 260, 516, 1028, 2052, 4100, 8196, 16388, 32772, 65540, 131076, 262148, 524292, 1048580, 2097156, 4194308, 8388612, 16777220, 33554436, 67108868, 134217732, 268435460, 536870916, 1073741828
Offset: 0
-
v[n_] := 2*(If[n == 0, 0, 2^(n - 1)] + 2); Table[v[n], {n, 0, 30}]
A267615
a(n) = 2^n + 11.
Original entry on oeis.org
12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0
Cf. sequences with closed form 2^n + k - 1:
A168616 (k=-4),
A028399 (k=-3),
A036563 (k=-2),
A000918 (k=-1),
A000225 (k=0),
A000079 (k=1),
A000051 (k=2),
A052548 (k=3),
A062709 (k=4),
A140504 (k=5),
A168614 (k=6),
A153972 (k=7),
A168415 (k=8),
A242475 (k=9),
A188165 (k=10),
A246139 (k=11), this sequence (k=12).
-
[2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
-
Table[2^n + 11, {n, 0, 35}]
LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
-
a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
Comments