cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A127955 Composite numbers of the form (2^p+1)/3 where p is a prime.

Original entry on oeis.org

178956971, 45812984491, 733007751851, 46912496118443, 3002399751580331, 192153584101141163, 49191317529892137643, 787061080478274202283, 3148244321913096809131, 3223802185639011132549803
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p-1 is squarefree, the terms are overpseudoprimes (see A141232). - Vladimir Shevelev, Jul 15 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 2, 30}]; a
    Select[(2^Prime[Range[2,30]]+1)/3,CompositeQ] (* Harvey P. Dale, Feb 04 2015 *)

A141350 Overpseudoprimes to base 3.

Original entry on oeis.org

121, 703, 3281, 8401, 12403, 31621, 44287, 47197, 55969, 74593, 79003, 88573, 97567, 105163, 112141, 211411, 221761, 226801, 228073, 293401, 313447, 320167, 328021, 340033, 359341, 432821, 443713, 453259, 478297, 497503, 504913, 679057, 709873, 801139, 867043, 894781, 973241, 1042417
Offset: 1

Views

Author

Vladimir Shevelev, Jun 27 2008, corrected Sep 07 2008

Keywords

Comments

If h_3(n) is the multiplicative order of 3 modulo n, r_3(n) is the number of cyclotomic cosets of 3 modulo n then, by the definition, n is an overpseudoprime to base 3 if h_3(n)*r_3(n)+1=n. These numbers are in A020229.
In particular, if n is squarefree such that its prime factorization is n=p_1*...*p_k, then n is overpseudoprime of base 3 iff h_3(p_1)=...=h_3(p_k).

Crossrefs

Programs

  • Mathematica
    ops3Q[n_] := CompositeQ[n] && GCD[n, 3] == 1 && MultiplicativeOrder[3, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[3, #] &] - 1) + 1 == n; Select[Range[10^6], ops3Q] (* Amiram Eldar, Jun 24 2019 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (gcd(n,3)==1) && (znorder(Mod(3,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(3, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018

Extensions

a(10)-a(38) from Gilberto Garcia-Pulgarin added by Vladimir Shevelev, Feb 06 2012

A140797 Numbers of the form (2^p^N-1)/(2^p^(N-1)-1), where N>0, p is prime.

Original entry on oeis.org

3, 5, 7, 17, 31, 73, 127, 257, 2047, 8191, 65537, 131071, 262657, 524287, 1082401, 8388607, 536870911, 2147483647, 4294967297, 137438953471, 2199023255551, 4432676798593, 8796093022207, 140737488355327, 9007199254740991, 18014398643699713, 576460752303423487
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008

Keywords

Comments

Contains Fermat numbers A000215 (p=2) and Mersenne numbers A001348 (N=1). The terms of the sequence are either primes A000040 or overpseudoprimes A141232.
The values of A019320(n) for prime power n, sorted. This sequence is a subsequence of A064896, which means that all terms are sturdy numbers (A125121). It appears that the largest prime factor of each of these numbers is a sturdy prime (A143027). - T. D. Noe, Jul 21 2008

Crossrefs

Programs

  • Mathematica
    nmax[p_] := Which[p == 2, 6, p == 3, 4, True, 2];
    Reap[Do[If[IntegerQ[k = (2^p^n-1)/(2^p^(n-1)-1)] && k<10^18, Print[{p, n, k}]; Sow[k]], {p, Prime[Range[17]]}, {n, 1, nmax[p]}]][[2, 1]] // Union (* Jean-François Alcover, Dec 10 2018 *)

Extensions

Definition corrected by and more terms from T. D. Noe, Jul 21 2008

A140803 Numbers of the form (2^(p*q)-1) /((2^p-1)*(2^q-1)), where p>q are primes.

Original entry on oeis.org

3, 11, 43, 151, 683, 2359, 2731, 43691, 174763, 599479, 2796203, 8727391, 9588151, 178956971, 715827883, 2454285751, 39268347319, 45812984491, 567767102431, 733007751851, 2932031007403, 10052678938039, 46912496118443, 145295143558111, 3002399751580331, 41175768098368951, 192153584101141163
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 22 2008; corrected Sep 07 2008

Keywords

Comments

The sequence contains, in particular, A126614 (q=2) and A143012 (q=3).
If pq-1 is squarefree then the terms of the sequence are either primes or overpseudoprimes to base 2 (see A141232). In particular, they are strong pseudoprimes to base 2 (A001262).

Examples

			Entry 3 from (q=2,p=3), entry 11 from (q=2,p=5), entry 43 from (q=2,p=7), entry 151 from (q=3,p=5), entry 683 from (q=2,p=11).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to use all (p,q) with p*q < N
    Primes:= select(isprime,[$2..floor(N/2)]):
    A:= {}:
    for i from 1 to nops(Primes) do
      p:= Primes[i];
      Qs:= select(q -> q < N/p, [seq(Primes[j],j=1..i-1)]);
      A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1),q=Qs)};
    od:
    A; # Robert Israel, Sep 02 2014
  • Mathematica
    terms = 27; Clear[seq]; seq[m_] := seq[m] = Table[(2^(p q)-1)/((2^p-1) (2^q-1)), {q, Prime[Range[m]]}, {p, Prime[Range[PrimePi[q]+1, terms]]}] // Flatten // Union // PadRight[#, terms]&;
    seq[1]; seq[m=2]; While[seq[m] != seq[m-1], m++]; seq[m] (* Jean-François Alcover, Sep 17 2018 *)

Extensions

a(17) to a(27) from Robert Israel, Sep 03 2014

A141390 Overpseudoprimes to base 5.

Original entry on oeis.org

781, 1541, 5461, 13021, 15751, 25351, 29539, 38081, 40501, 79381, 100651, 121463, 133141, 195313, 216457, 315121, 318551, 319507, 326929, 341531, 353827, 375601, 416641, 432821, 453331, 464881, 498451, 555397, 556421, 753667, 764941, 863329, 872101, 886411
Offset: 1

Views

Author

Vladimir Shevelev, Jun 29 2008

Keywords

Comments

If h_5(n) is the multiplicative order of 5 modulo n, r_5(n) is the number of cyclotomic cosets of 5 modulo n then, by the definition, n is an overpseudoprime of base 5 if h_5(n)*r_5(n)+1=n. These numbers are in A020231. In particular, if n is squarefree such that its prime factorization is n=p_1*...*p_k, then n is overpseudoprime to base 5 iff h_5(p_1)=...=h_5(p_k). E.g., since h_5(101)=h_5(251)=h_5(401)=25, the number 101*251*401=10165751 is in the sequence.

Crossrefs

Programs

  • Mathematica
    ops5Q[n_] := CompositeQ[n] && GCD[n, 5] == 1 && MultiplicativeOrder[5, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[5, #] &] - 1) + 1 == n; Select[Range[6, 10^6], ops5Q] (* Amiram Eldar, Jun 24 2019 *)
  • PARI
    isok(n) = (n>5) && !isprime(n) && (gcd(n,5)==1) && (znorder(Mod(5,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(5, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018

Extensions

Inserted a(2) and a(8) and extended at the suggestion of Gilberto Garcia-Pulgarin by Vladimir Shevelev, Feb 06 2012

A131952 a(n) is the maximal overpseudoprime q to base 2 such that the multiplicative order of 2 mod q equals A143584(n).

Original entry on oeis.org

2047, 8388607, 1082401, 3277, 536870911, 8727391, 4033, 137438953471, 9588151, 2199023255551, 8796093022207, 838861, 14709241, 140737488355327, 65281, 1016801, 2454285751, 13421773, 9007199254740991, 567767102431, 39268347319, 178956971, 576460752303423487, 80581
Offset: 1

Views

Author

Vladimir Shevelev, Aug 26 2008

Keywords

Comments

Or composite terms of A064078.

Examples

			For q=256999, 486737, 2304167 and 536870911, the multiplicative order of 2 mod q is A143584(5) = 29, so a(5) = 536870911.
		

Crossrefs

Programs

  • PARI
    for(k=1,200,m=polcyclo(k,2);m/=gcd(m,k);m!=1&&!isprime(m)&&print1(m,", ")) \\ Jeppe Stig Nielsen, Aug 31 2020

Extensions

More terms from Hugo Pfoertner, Aug 31 2020

A141629 a(n) is the least base-2 overpseudoprime k such that the multiplicative order of 2 mod k equals 8*n+20.

Original entry on oeis.org

3277, 4033, 838861, 8321, 80581, 130561, 104653, 20647621, 280601, 818201, 68719214593, 57646075230342349, 48448661, 1353244757701, 351479006145541, 88357, 390937, 1846171781, 17585969, 9774181, 28147501026509, 3882413703281, 1251949, 9007199388958721
Offset: 1

Views

Author

Vladimir Shevelev, Aug 24 2008

Keywords

Comments

C. Pomerance proved (private correspondence) that for every n>=1 there exists at least one overpseudoprime (a(n)) for which the multiplicative order of 2 mod a(n) equals 8n+20.
a(25) > 2^64. - Amiram Eldar, Nov 09 2023

Crossrefs

Extensions

a(4) corrected and a(12)-a(24) added by Amiram Eldar, Nov 09 2023

A143584 Integers that are equal to the multiplicative order of 2 modulo some overpseudoprime to base 2.

Original entry on oeis.org

11, 23, 25, 28, 29, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 82, 83, 84, 87, 88, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112
Offset: 1

Views

Author

Vladimir Shevelev, Aug 25 2008

Keywords

Comments

A064078(a(n)) is a composite number. The sequence has a positive density since it contains, in particular, numbers of the form 8n+20 for n >= 1 (C. Pomerance, private correspondence). Since, e.g., 38 is not in the sequence, there is not an overpseudoprime m such that ord_m(2)=38.
Phi_{a(n)}(2), the a(n)-th cyclotomic polynomial of x evaluated at x=2 has at least 2 distinct prime factors that are not prime factors of the Phi_k(2) for any positive integer k < a(n). For example, Phi_11(2) = 2^11 - 1 = 2047 = 23 * 89 and Phi_25(2) = 2^20 + 2^15 + 2^10 + 2^5 + 1 = 1082401 = 601 * 1801. Note that p = a(n) is prime if and only if Phi_p(2) = 2^p - 1 is composite. - David Terr, Sep 09 2018
It is easy to prove the statement above. We use the fact that Phi_j(n) and Phi_k(n) are coprime whenever j and k are coprime as well as the fact that an overpseudoprime has at least 2 distinct prime factors. - David Terr, Oct 10 2018
A number k is included iff either 2^k-1 has more than one primitive prime factor (cf. A086251, A161508) or the only primitive prime factor of 2^k-1 is a Wieferich prime (no examples known). - Jeppe Stig Nielsen, Sep 01 2020

Crossrefs

Cf. A131952 (for the corresponding maximal overpseudoprimes).

Programs

  • PARI
    isok(k) = my(m=polcyclo(k,2)); m/=gcd(m,k); m!=1&&!isprime(m) \\ Jeppe Stig Nielsen, Sep 01 2020

Extensions

Name edited by Michel Marcus, Oct 06 2018
More terms from Michel Marcus, Oct 11 2018
Data for terms >= 100 corrected by Jeppe Stig Nielsen, Sep 01 2020

A192297 Lesser of pseudo twin primes to base 2.

Original entry on oeis.org

561, 643, 645, 1103, 1905, 2465, 2699, 2819, 4369, 4371, 4679, 6599, 10259, 12799, 14489, 16703, 18719, 19949, 23001, 25759, 25761, 29339, 30119, 31607, 33151, 39863, 41039, 42797, 49139, 52631, 55243, 60701, 62743, 68099, 72883, 83663, 85487, 87249, 90749
Offset: 1

Views

Author

Vladimir Shevelev, Oct 11 2011

Keywords

Comments

We call numbers {k,k+2} pseudo twin primes to base 2 if at least one of them is composite, while 2^(k-1) == 1 (mod k) and 2^(k+1) == 1 mod (k+2).
4369 is the only known term such that both k and k+2 are composite (cf. A173619). - Jianing Song, Nov 20 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 2+`if` (n=1, 1, a(n-1)) by 2 while
            isprime(k) and isprime(k+2) or
              (2&^(k-1) mod k)<>1 or (2&^(k+1) mod (k+2))<>1
          do od; k
        end:
    seq (a(n), n=1..40);  # Alois P. Heinz, Oct 13 2011
  • Mathematica
    fQ[n_] := (! PrimeQ[n] || ! PrimeQ[n + 2]) && PowerMod[2, n - 1, n] == 1 && PowerMod[2, n + 1, n + 2] == 1; Select[2 Range@ 32000 + 1, fQ] (* Robert G. Wilson v, Oct 11 2011 *)
  • PARI
    is(n)=Mod(2,n^2+2*n)^(n+2)==3*n+8 && (!isprime(n) || !isprime(n+2)) && n>1 \\ Charles R Greathouse IV, Dec 02 2014

Formula

2^(a(n) + 2) == 3*a(n) + 8 (mod a(n)*(a(n)+2)).
4*(2^(a(n)-1)-1) == -a(n)*((a(n)-1)/2) (mod a(n)*(a(n)+2)). - Davide Rotondo, Nov 07 2021

A194231 Numbers k such that at least one of k and k+2 is composite, while for every b coprime to k*(k+2), b^(k-1) == 1 (mod k) and b^(k+1) == 1 (mod k+2).

Original entry on oeis.org

561, 1103, 2465, 2819, 6599, 29339, 41039, 52631, 62743, 172079, 188459, 278543, 340559, 488879, 656599, 656601, 670031, 1033667, 1909001, 2100899, 3146219, 5048999, 6049679, 8719307, 10024559, 10402559, 10877579, 11119103, 12261059, 14913989, 15247619
Offset: 1

Views

Author

Vladimir Shevelev, Oct 12 2011

Keywords

Comments

These might be called "Carmichael pseudo-twin-primes".

Crossrefs

Subsequences: A272754, A290692.

Programs

  • Maple
    with(numtheory):
    ic:= proc(n) local p;
           if not issqrfree(n) then false
         else for p in factorset(n) do
                if irem (n-1, p-1)<>0 then return false fi
              od; true
           fi
         end:
    a:= proc(n) option remember; local k;
          for k from 2 +`if`(n=1, 1, a(n-1)) by 2 while
            isprime(k) and isprime(k+2) or not (ic(k) and ic(k+2))
          do od; k
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, Oct 12 2011
  • Mathematica
    terms = 31; bMax = 20(* sufficient for 31 terms *); coprimes[n_] := Select[ Range[bMax], CoprimeQ[#, n]&]; Reap[For[n = m = 1, m <= terms, n += 2, If[CompositeQ[n] || CompositeQ[n+2], If[AllTrue[coprimes[n(n+2)], PowerMod[#, n-1, n] == 1 && PowerMod[#, n+1, n+2] == 1&], Print["a(", m, ") = ", n]; Sow[n]; m++]]]][[2, 1]] (* Jean-François Alcover, Mar 28 2017 *)

Formula

For every b coprime to a(n)*(a(n)+2), 2*b^(a(n)+1) == (b^2-1)*(a(n)+2) (mod a(n)*(a(n)+2)). Conversely (Max Alekseyev), if for every b coprime to N*(N+2), 2*b^(N+1) == (b^2-1)*(N+2) (mod N*(N+2)), then N is in the sequence. - Vladimir Shevelev, Oct 14 2011
Previous Showing 11-20 of 26 results. Next