A257621
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 42, 9, 27, 393, 393, 27, 81, 3156, 8646, 3156, 81, 243, 23631, 142446, 142446, 23631, 243, 729, 171006, 2015895, 4273380, 2015895, 171006, 729, 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187, 6561, 8584872, 320039388, 2136524184, 3891302790, 2136524184, 320039388, 8584872, 6561
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, ...;
3, 42, 393, 3156, 23631, ...;
9, 393, 8646, 142446, 2015895, ...;
27, 3156, 142446, 4273380, 102402705, ...;
81, 23631, 2015895, 102402705, 3891302790, ...;
243, 171006, 26107983, 2136524184, 123074809242, ...;
729, 1216725, 320039388, 40688926236, 3437022383970, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 42, 9;
27, 393, 393, 27;
81, 3156, 8646, 3156, 81;
243, 23631, 142446, 142446, 23631, 243;
729, 171006, 2015895, 4273380, 2015895, 171006, 729;
2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,4,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257621(n,k): return t(n-k,k,4,3)
flatten([[A257621(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A142461
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 6.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 111, 111, 1, 1, 796, 2886, 796, 1, 1, 5597, 52642, 52642, 5597, 1, 1, 39210, 824271, 2000396, 824271, 39210, 1, 1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1, 1, 1921592, 165260188, 1483533704, 2930714950, 1483533704, 165260188, 1921592, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 111, 111, 1;
1, 796, 2886, 796, 1;
1, 5597, 52642, 52642, 5597, 1;
1, 39210, 824271, 2000396, 824271, 39210, 1;
1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142461[n_, k_]:= T[n, k, 6];
Table[A142461[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142461(n,k): return T(n,k,6)
flatten([[ A142461(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A142462
Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 7.
Original entry on oeis.org
1, 1, 1, 1, 16, 1, 1, 143, 143, 1, 1, 1166, 4290, 1166, 1, 1, 9357, 90002, 90002, 9357, 1, 1, 74892, 1621383, 3960088, 1621383, 74892, 1, 1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1, 1, 4793482, 431017552, 3923731798, 7780238494, 3923731798, 431017552, 4793482, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 16, 1;
1, 143, 143, 1;
1, 1166, 4290, 1166, 1;
1, 9357, 90002, 90002, 9357, 1;
1, 74892, 1621383, 3960088, 1621383, 74892, 1;
1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460,
A142461,
A142462, ...
-
function T(n,k,m)
if k eq 1 or k eq n then return 1;
else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
end if; return T;
end function;
A142462:= func< n,k | T(n,k,7) >;
[A142462(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142462[n_, k_]:= T[n,k,7];
Table[A142462[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142462(n,k): return T(n,k,7)
flatten([[ A142462(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A167884
Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
Original entry on oeis.org
1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 179, 179, 1;
1, 1636, 6086, 1636, 1;
1, 14757, 144362, 144362, 14757, 1;
1, 132854, 2941135, 7218100, 2941135, 132854, 1;
1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142460,
A142461,
A142462,
A167884, ...
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A167884[n_, k_]:= T[n,k,8];
Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A167884(n,k): return T(n,k,8)
flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022
A225372
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -2.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -6, 15, -20, 15, -6, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, -2, 1;
1, -1, -1, 1;
1, -4, 6, -4, 1;
1, -3, 2, 2, -3, 1;
1, -6, 15, -20, 15, -6, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -8, 28, -56, 70, -56, 28, -8, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ...,
A225372,
A144431,
A007318,
A008292,
A060187,
A142458,
A142459,
A142560,
A142561,
A142562,
A167884, ...
-
function T(n,k,m)
if k eq 1 or k eq n then return 1;
else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
end if; return T;
end function;
A225372:= func< n,k | T(n,k,-2) >;
[A225372(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
-
T:=proc(n,k,l) option remember;
if (n=1 or k=1 or k=n) then 1 else
(l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
for n from 1 to 14 do lprint([seq(T(n,k,-2),k=1..n)]); od;
-
T[n_, k_, l_] := T[n, k, l] = If[n == 1 || k == 1 || k == n, 1, (l*n-l*k+1)*T[n-1, k-1, l]+(l*k-l+1)*T[n-1, k, l]]; Table[T[n, k, -2], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A225372(n,k): return T(n,k,-2)
flatten([[ A225372(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
A257608
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 1.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 219, 219, 1, 1, 2218, 8322, 2218, 1, 1, 22217, 220222, 220222, 22217, 1, 1, 222216, 5006247, 12332432, 5006247, 222216, 1, 1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1, 1, 22222214, 2123693776, 19700767514, 39259903390, 19700767514, 2123693776, 22222214, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 219, 219, 1;
1, 2218, 8322, 2218, 1;
1, 22217, 220222, 220222, 22217, 1;
1, 222216, 5006247, 12332432, 5006247, 222216, 1;
1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,9,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257608
if (k<0 or k>n): return 0
elif (k==0 or k==n): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,9,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A168524
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 39, 39, 1, 1, 120, 350, 120, 1, 1, 341, 2266, 2266, 341, 1, 1, 950, 12895, 28340, 12895, 950, 1, 1, 2659, 69201, 290891, 290891, 69201, 2659, 1, 1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1, 1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1
Offset: 0
Triangle of coefficients begins as:
1;
1, 1;
1, 10, 1;
1, 39, 39, 1;
1, 120, 350, 120, 1;
1, 341, 2266, 2266, 341, 1;
1, 950, 12895, 28340, 12895, 950, 1;
1, 2659, 69201, 290891, 290891, 69201, 2659, 1;
1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1;
1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1;
-
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
Table[T[n, -2, 2, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
m=12
def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
flatten([[T(n,k,-2,2,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
A186492
Recursive triangle for calculating A186491.
Original entry on oeis.org
1, 0, 1, 2, 0, 3, 0, 14, 0, 15, 28, 0, 132, 0, 105, 0, 5556, 0, 1500, 0, 945, 1112, 0, 10668, 0, 1995, 0, 10395, 0, 43784, 0, 212940, 0, 304290, 0, 135135, 87568, 0, 1408992, 0, 4533480, 0, 5239080, 0, 2027025
Offset: 0
Table begins
n\k|.....0.....1......2.....3......4.....5......6
=================================================
0..|.....1
1..|.....0.....1
2..|.....2.....0......3
3..|.....0....14......0....15
4..|....28.....0....132.....0....105
5..|.....0...556......0..1500......0...945
6..|..1112.....0..10668.....0..19950.....0..10395
..
Examples of recurrence relation
T(4,2) = 3*T(3,1) + 6*T(3,3) = 3*14 + 6*15 = 132;
T(6,4) = 7*T(5,3) + 10*T(5,5) = 7*1500 + 10*945 = 19950.
-
R[0][] = 1; R[1][u] = u;
R[n_][u_] := R[n][u] = 2(1+u^2) R[n-1]'[u] + u R[n-1][u];
Table[CoefficientList[R[n][u], u], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)
A168523
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 98, 290, 98, 1, 1, 289, 1974, 1974, 289, 1, 1, 836, 11719, 25944, 11719, 836, 1, 1, 2419, 64929, 275307, 275307, 64929, 2419, 1, 1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1, 1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 98, 290, 98, 1;
1, 289, 1974, 1974, 289, 1;
1, 836, 11719, 25944, 11719, 836, 1;
1, 2419, 64929, 275307, 275307, 64929, 2419, 1;
1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1;
1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1;
-
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
Table[T[n,-1,1,1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
m=12
def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
flatten([[T(n,k,-1,1,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
A168525
Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
Original entry on oeis.org
19, 19, 19, 19, 146, 19, 19, 759, 759, 19, 19, 3154, 10374, 3154, 19, 19, 11543, 89398, 89398, 11543, 19, 19, 39210, 615669, 1394444, 615669, 39210, 19, 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19, 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19
Offset: 0
Triangle begins as:
19;
19, 19;
19, 146, 19;
19, 759, 759, 19;
19, 3154, 10374, 3154, 19;
19, 11543, 89398, 89398, 11543, 19;
19, 39210, 615669, 1394444, 615669, 39210, 19;
19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19;
19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
-
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
Table[T[n, 65/2, -162/2, 135/2], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
m=12
def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
flatten([[T(n,k,65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
Comments