cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A257621 Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 42, 9, 27, 393, 393, 27, 81, 3156, 8646, 3156, 81, 243, 23631, 142446, 142446, 23631, 243, 729, 171006, 2015895, 4273380, 2015895, 171006, 729, 2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187, 6561, 8584872, 320039388, 2136524184, 3891302790, 2136524184, 320039388, 8584872, 6561
Offset: 0

Views

Author

Dale Gerdemann, May 09 2015

Keywords

Examples

			Array t(n,k) begins as:
    1,       3,         9,          27,            81, ...;
    3,      42,       393,        3156,         23631, ...;
    9,     393,      8646,      142446,       2015895, ...;
   27,    3156,    142446,     4273380,     102402705, ...;
   81,   23631,   2015895,   102402705,    3891302790, ...;
  243,  171006,  26107983,  2136524184,  123074809242, ...;
  729, 1216725, 320039388, 40688926236, 3437022383970, ...;
Triangle T(n,k) begins as:
     1;
     3,       3;
     9,      42,        9;
    27,     393,      393,        27;
    81,    3156,     8646,      3156,        81;
   243,   23631,   142446,    142446,     23631,      243;
   729,  171006,  2015895,   4273380,   2015895,   171006,     729;
  2187, 1216725, 26107983, 102402705, 102402705, 26107983, 1216725, 2187;
		

Crossrefs

Cf. A000407 (row sums), A142459, A257612.
Similar sequences listed in A256890.

Programs

  • Mathematica
    t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
    T[n_, k_, p_, q_]= t[n-k, k, p, q];
    Table[T[n,k,4,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
  • Sage
    @CachedFunction
    def t(n,k,p,q):
        if (n<0 or k<0): return 0
        elif (n==0 and k==0): return 1
        else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
    def A257621(n,k): return t(n-k,k,4,3)
    flatten([[A257621(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022

Formula

T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 4*n + 3.
Sum_{k=0..n} T(n, k) = A000407(n).
From G. C. Greubel, Mar 01 2022: (Start)
t(k, n) = t(n, k).
T(n, n-k) = T(n, k).
t(0, n) = T(n, 0) = A000244(n). (End)

A142461 Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 6.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 111, 111, 1, 1, 796, 2886, 796, 1, 1, 5597, 52642, 52642, 5597, 1, 1, 39210, 824271, 2000396, 824271, 39210, 1, 1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1, 1, 1921592, 165260188, 1483533704, 2930714950, 1483533704, 165260188, 1921592, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     14,        1;
  1,    111,      111,        1;
  1,    796,     2886,      796,        1;
  1,   5597,    52642,    52642,     5597,        1;
  1,  39210,   824271,  2000396,   824271,    39210,      1;
  1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, ...
Cf. A047657 (row sums).

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
    A142461[n_, k_]:= T[n, k, 6];
    Table[A142461[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A142461(n,k): return T(n,k,6)
    flatten([[ A142461(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022

Formula

T(n,k,m) = (m*n - m*k + 1)*T(n-1, k-1, m) + (m*k - (m-1))*T(n-1, k, m), with T(n, 1, m) = T(n, n, m) = 1, and m = 6.
Sum_{k=1..n} T(n, k, 6) = A047657(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013

A142462 Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 7.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 143, 143, 1, 1, 1166, 4290, 1166, 1, 1, 9357, 90002, 90002, 9357, 1, 1, 74892, 1621383, 3960088, 1621383, 74892, 1, 1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1, 1, 4793482, 431017552, 3923731798, 7780238494, 3923731798, 431017552, 4793482, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     16,        1;
  1,    143,      143,         1;
  1,   1166,     4290,      1166,         1;
  1,   9357,    90002,     90002,      9357,        1;
  1,  74892,  1621383,   3960088,   1621383,    74892,      1;
  1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, ...
Cf. A084947 (row sums).

Programs

  • Magma
    function T(n,k,m)
      if k eq 1 or k eq n then return 1;
      else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
      end if; return T;
    end function;
    A142462:= func< n,k | T(n,k,7) >;
    [A142462(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
    
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n,  1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
    A142462[n_, k_]:= T[n,k,7];
    Table[A142462[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A142462(n,k): return T(n,k,7)
    flatten([[ A142462(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 7.
Sum_{k=1..n} T(n, k) = A084947(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013

A167884 Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.

Original entry on oeis.org

1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
Offset: 1

Views

Author

Roger L. Bagula, Nov 14 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      18,        1;
  1,     179,      179,         1;
  1,    1636,     6086,      1636,         1;
  1,   14757,   144362,    144362,     14757,        1;
  1,  132854,  2941135,   7218100,   2941135,   132854,       1;
  1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, A167884, ...
Cf. A084948 (row sums).

Programs

  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
    A167884[n_, k_]:= T[n,k,8];
    Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A167884(n,k): return T(n,k,8)
    flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8.
Sum_{k=1..n} T(n, k) = A084948(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013

A225372 Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -2.

Original entry on oeis.org

1, 1, 1, 1, -2, 1, 1, -1, -1, 1, 1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -6, 15, -20, 15, -6, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
Offset: 1

Views

Author

N. J. A. Sloane and Roger L. Bagula, May 08 2013

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1, -2,  1;
  1, -1, -1,   1;
  1, -4,  6,  -4,  1;
  1, -3,  2,   2, -3,   1;
  1, -6, 15, -20, 15,  -6,   1;
  1, -5,  9,  -5, -5,   9,  -5,  1;
  1, -8, 28, -56, 70, -56,  28, -8,  1;
  1, -7, 20, -28, 14,  14, -28, 20, -7, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142560, A142561, A142562, A167884, ...
Cf. A130706 (row sums).

Programs

  • Magma
    function T(n,k,m)
      if k eq 1 or k eq n then return 1;
      else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
      end if; return T;
    end function;
    A225372:= func< n,k | T(n,k,-2) >;
    [A225372(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
    
  • Maple
    T:=proc(n,k,l) option remember;
    if (n=1 or k=1 or k=n) then 1 else
    (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
    for n from 1 to 14 do lprint([seq(T(n,k,-2),k=1..n)]); od;
  • Mathematica
    T[n_, k_, l_] := T[n, k, l] = If[n == 1 || k == 1 || k == n, 1, (l*n-l*k+1)*T[n-1, k-1, l]+(l*k-l+1)*T[n-1, k, l]]; Table[T[n, k, -2], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A225372(n,k): return T(n,k,-2)
    flatten([[ A225372(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = -2.
Sum_{k=1..n} T(n, k) = A130706(n-1). - G. C. Greubel, Mar 17 2022

A257608 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 1.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 1, 219, 219, 1, 1, 2218, 8322, 2218, 1, 1, 22217, 220222, 220222, 22217, 1, 1, 222216, 5006247, 12332432, 5006247, 222216, 1, 1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1, 1, 22222214, 2123693776, 19700767514, 39259903390, 19700767514, 2123693776, 22222214, 1
Offset: 0

Views

Author

Dale Gerdemann, May 03 2015

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      20,         1;
  1,     219,       219,         1;
  1,    2218,      8322,      2218,         1;
  1,   22217,    220222,    220222,     22217,         1;
  1,  222216,   5006247,  12332432,   5006247,    222216,       1;
  1, 2222215, 105340629, 530539235, 530539235, 105340629, 2222215, 1;
		

Crossrefs

Cf. A084949 (row sums), A257619.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,9,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • Sage
    def T(n,k,a,b): # A257608
        if (k<0 or k>n): return 0
        elif (k==0 or k==n): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,9,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n, k) = t(n-k, k), where t(n,k) = f(k)*t(n-1, k) + f(n)*t(n, k-1), and f(n) = 9*n + 1.
Sum_{k=0..n} T(n, k) = A084949(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = T(n, n) = 1, a = 9, and b = 1. - G. C. Greubel, Mar 20 2022

A168524 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 39, 39, 1, 1, 120, 350, 120, 1, 1, 341, 2266, 2266, 341, 1, 1, 950, 12895, 28340, 12895, 950, 1, 1, 2659, 69201, 290891, 290891, 69201, 2659, 1, 1, 7540, 360772, 2661644, 4987254, 2661644, 360772, 7540, 1, 1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2009

Keywords

Examples

			Triangle of coefficients begins as:
  1;
  1,     1;
  1,    10,       1;
  1,    39,      39,        1;
  1,   120,     350,      120,        1;
  1,   341,    2266,     2266,      341,        1;
  1,   950,   12895,    28340,    12895,      950,        1;
  1,  2659,   69201,   290891,   290891,    69201,     2659,       1;
  1,  7540,  360772,  2661644,  4987254,  2661644,   360772,    7540,     1;
  1, 21681, 1851948, 22618188, 72033750, 72033750, 22618188, 1851948, 21681, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
    Table[T[n, -2, 2, 1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
  • Sage
    m=12
    def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
    def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
    def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
    flatten([[T(n,k,-2,2,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -2, b = 2, c = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 19 2022

A186492 Recursive triangle for calculating A186491.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 14, 0, 15, 28, 0, 132, 0, 105, 0, 5556, 0, 1500, 0, 945, 1112, 0, 10668, 0, 1995, 0, 10395, 0, 43784, 0, 212940, 0, 304290, 0, 135135, 87568, 0, 1408992, 0, 4533480, 0, 5239080, 0, 2027025
Offset: 0

Views

Author

Peter Bala, Feb 22 2011

Keywords

Comments

The table entries are defined by a recurrence relation (see below).
This triangle can be used to calculate the entries of A186491: the nonzero entries of the first column of the triangle give A186491.
PRODUCTION MATRIX
The production matrix P for this triangle is the bidiagonal matrix with the sequence [2,4,6,...] on the main subdiagonal, the sequence [1,3,5,...] on the main superdiagonal and 0's elsewhere: the first row of P^n is the n-th row of this triangle.

Examples

			Table begins
n\k|.....0.....1......2.....3......4.....5......6
=================================================
0..|.....1
1..|.....0.....1
2..|.....2.....0......3
3..|.....0....14......0....15
4..|....28.....0....132.....0....105
5..|.....0...556......0..1500......0...945
6..|..1112.....0..10668.....0..19950.....0..10395
..
Examples of recurrence relation
T(4,2) = 3*T(3,1) + 6*T(3,3) = 3*14 + 6*15 = 132;
T(6,4) = 7*T(5,3) + 10*T(5,5) = 7*1500 + 10*945 = 19950.
		

Crossrefs

Programs

  • Mathematica
    R[0][] = 1; R[1][u] = u;
    R[n_][u_] := R[n][u] = 2(1+u^2) R[n-1]'[u] + u R[n-1][u];
    Table[CoefficientList[R[n][u], u], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)

Formula

Recurrence relation
(1)... T(n,k) = (2*k-1)*T(n-1,k-1)+(2*k+2)*T(n-1,k+1).
GENERATING FUNCTION
E.g.f. (Compare with the e.g.f. of A104035):
(2)... 1/sqrt(cos(2*t)-u*sin(2*t)) = sum {n = 0..inf } R(n,u)*t^n/n! = 1 + u*t + (2+3*u^2)*t^2/2! + (14*u+15*u^3)*t^3/3!+....
ROW POLYNOMIALS
The row polynomials R(n,u) begin
... R(1,u) = u
... R(2,u) = 2+3*u^2
... R(3,u) = 14*u+15*u^3
... R(4,u) = 28+132*u^2+105u^4.
They satisfy the recurrence relation
(3)... R(n+1,u) = 2*(1+u^2)*d/du(R(n,u))+u*R(n,u) with starting value R(0,u) = 1.
Compare with Formula (1) of A104035 for the polynomials Q_n(u).
The polynomials R(n,u) are related to the shifted row polynomials A(n,u) of A142459 via
(4)... R(n,u) = ((u+I)/2)^n*A(n+1,(u-I)/(u+I))
with the inverse identity
(5)... A(n+1,u) = (-I)^n*(1-u)^n*R(n,I*(1+u)/(1-u)),
where {A(n,u)}n>=1 begins [1,1+u,1+10*u+u^2,1+59*u+59*u^2+u^3,...] and I = sqrt(-1).

A168523 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 98, 290, 98, 1, 1, 289, 1974, 1974, 289, 1, 1, 836, 11719, 25944, 11719, 836, 1, 1, 2419, 64929, 275307, 275307, 64929, 2419, 1, 1, 7046, 346192, 2573466, 4831134, 2573466, 346192, 7046, 1, 1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     8,       1;
  1,    31,      31,        1;
  1,    98,     290,       98,        1;
  1,   289,    1974,     1974,      289,        1;
  1,   836,   11719,    25944,    11719,      836,        1;
  1,  2419,   64929,   275307,   275307,    64929,     2419,       1;
  1,  7046,  346192,  2573466,  4831134,  2573466,   346192,    7046,     1;
  1, 20677, 1804144, 22163080, 70723522, 70723522, 22163080, 1804144, 20677, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
    Table[T[n,-1,1,1], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
  • Sage
    m=12
    def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
    def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
    def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
    flatten([[T(n,k,-1,1,1) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = -1, b = 1, c = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 19 2022

A168525 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.

Original entry on oeis.org

19, 19, 19, 19, 146, 19, 19, 759, 759, 19, 19, 3154, 10374, 3154, 19, 19, 11543, 89398, 89398, 11543, 19, 19, 39210, 615669, 1394444, 615669, 39210, 19, 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19, 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19
Offset: 0

Views

Author

Roger L. Bagula, Nov 28 2009

Keywords

Examples

			Triangle begins as:
  19;
  19,     19;
  19,    146,       19;
  19,    759,      759,        19;
  19,   3154,    10374,      3154,        19;
  19,  11543,    89398,     89398,     11543,        19;
  19,  39210,   615669,   1394444,    615669,     39210,       19;
  19, 127303,  3747297,  16267301,  16267301,   3747297,   127303,     19;
  19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
		

Crossrefs

Programs

  • Mathematica
    T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x];
    Table[T[n, 65/2, -162/2, 135/2], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
  • Sage
    m=12
    def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) )
    def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2)
    def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k]
    flatten([[T(n,k,65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 19 2022
Previous Showing 11-20 of 25 results. Next