cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A342891 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_12 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 91, 91, 1, 1, 455, 3185, 455, 1, 1, 1820, 63700, 63700, 1820, 1, 1, 6188, 866320, 4331600, 866320, 6188, 1, 1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1, 1, 50388, 71954064, 4892876352, 19571505408, 4892876352, 71954064, 50388, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Comments

For references, links, programs, etc., see earlier sequences in this series, especially A342889.

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 13, 1],
  [1, 91, 91, 1],
  [1, 455, 3185, 455, 1],
  [1, 1820, 63700, 63700, 1820, 1],
  [1, 6188, 866320, 4331600, 866320, 6188, 1],
  [1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1],
...
		

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 12); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).

A005365 Hoggatt sequence with parameter d=7.

Original entry on oeis.org

1, 2, 10, 74, 782, 10562, 175826, 3457742, 78408332, 2005691690, 56970282514, 1772967273794, 59814500606018, 2168062920325850, 83802728579860658, 3432438439271783026, 148165335791410936770, 6708873999658599592672
Offset: 0

Views

Author

Keywords

Comments

Let V be the vector representation of SL(7) (of dimension 7) and let E be the exterior algebra of V (of dimension 128). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 03 2021
This is the number of 7-vicious walkers (aka vicious 7-watermelons) - see Essam and Guttmann (1995). This is the 7-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021

References

  • D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A142467:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]) >;
    A005365:= func< n | (&+[A142467(n,k): k in [0..n]]) >;
    [A005365(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
    
  • Mathematica
    A005365[n_]:=HypergeometricPFQ[{-6-n,-5-n,-4-n,-3-n,-2-n,-1-n,-n},{2,3,4,5,6,7},-1] (* Richard L. Ollerton, Sep 13 2006 *)
  • PARI
    a(n) = my(d=7); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k,d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
    
  • SageMath
    def A005365(n): return simplify(hypergeometric([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2,3,4,5,6,7], -1))
    [A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022

Formula

a(n) = Hypergeometric7F6([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6, 7], -1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(7,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 6075 * 2^(7*n + 57) / (sqrt(7) * Pi^3 * n^24). - Vaclav Kotesovec, Apr 01 2021

Extensions

More terms from Sean A. Irvine, May 29 2016

A342972 Triangle T(n,k) read by rows: T(n,k) = Product_{j=0..n-1} binomial(n+j,k)/binomial(k+j,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 35, 105, 35, 1, 1, 126, 1176, 1176, 126, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2021

Keywords

Comments

Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)n where (n,k)_m is Product{j=1..k} binomial(n-j+m,m)/binomial(j-1+m,m).

Examples

			Triangle begins:
  1;
  1,    1;
  1,    3,       1;
  1,   10,      10,        1;
  1,   35,     105,       35,         1;
  1,  126,    1176,     1176,       126,        1;
  1,  462,   13860,    41580,     13860,      462,       1;
  1, 1716,  169884,  1557270,   1557270,   169884,    1716,    1;
  1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
		

Crossrefs

Row sums gives A342967.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    T[n_, k_] := Product[Binomial[n + i, k]/Binomial[k + i, k], {i, 0, n - 1}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 01 2021 *)
  • PARI
    T(n, k) = prod(j=0, n-1, binomial(n+j, k)/binomial(k+j, k));
    
  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-1, n+j)/binomial(2*n-1, j));
    
  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, n);

Formula

T(n,k) = Product_{j=0..k-1} binomial(2*n-1,n+j)/binomial(2*n-1,j).

A142597 Triangle read by rows: t(n,k)=t(n - 1, k - 1) + 4* t(n - 1, k) + 3*t(n - 1, k - 1).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 148, 288, 148, 1, 1, 596, 1744, 1744, 596, 1, 1, 2388, 9360, 13952, 9360, 2388, 1, 1, 9556, 46992, 93248, 93248, 46992, 9556, 1, 1, 38228, 226192, 560960, 745984, 560960, 226192, 38228, 1, 1, 152916, 1057680, 3148608
Offset: 1

Views

Author

Roger L. Bagula, Sep 22 2008

Keywords

Comments

Row sums are: {1, 2, 10, 74, 586, 4682, 37450, 299594, 2396746, 19173962, ...}.

Examples

			Triangle begins:
{1},
{1, 1},
{1, 8, 1},
{1, 36, 36, 1},
{1, 148, 288, 148, 1},
{1, 596, 1744, 1744, 596, 1},
{1, 2388, 9360, 13952, 9360, 2388, 1},
{1, 9556, 46992, 93248, 93248, 46992, 9556, 1},
{1, 38228, 226192, 560960, 745984, 560960, 226192, 38228, 1},
{1, 152916, 1057680, 3148608, 5227776, 5227776, 3148608, 1057680, 152916, 1}
		

Crossrefs

Programs

  • Mathematica
    A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := A[n - 1, k - 1] + 4* A[n - 1, k] + 3*A[n - 1, k - 1]; a = Table[A[n, k], {n, 10}, {k, n}]; Flatten[a]

Extensions

Edited by N. J. A. Sloane, Dec 07 2008

A155834 A triangle sequence of general recursive Sierpinski-Pascal minus general Narayana with adjusted n,m levels and zeros out:k=2; t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).

Original entry on oeis.org

1, 1, 6, 16, 6, 22, 127, 127, 22, 64, 701, 1436, 701, 64, 163, 3117, 11503, 11503, 3117, 163, 382, 12088, 74122, 131494, 74122, 12088, 382, 848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848, 1816, 143562, 2094588, 9280734, 14992440, 9280734
Offset: 4

Views

Author

Roger L. Bagula, Jan 28 2009

Keywords

Comments

Row sums are;
2, 28, 298, 2966, 29566, 304678, 3302560, 38033840, 467861040, 6159690808,
86763791762,...
This level is the Eulerian number level:
only the odd Narayana levels correspond to the recursive Sierpinski-Pascal levels.

Examples

			{1, 1},
{6, 16, 6},
{22, 127, 127, 22},
{64, 701, 1436, 701, 64},
{163, 3117, 11503, 11503, 3117, 163},
{382, 12088, 74122, 131494, 74122, 12088, 382},
{848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848},
{1816, 143562, 2094588, 9280734, 14992440, 9280734, 2094588, 143562, 1816},
{3797, 462541, 9928140, 64761204, 158774838, 158774838, 64761204, 9928140, 462541, 3797},
{7814, 1453700, 44960878, 418557816, 1489425900, 2250878592, 1489425900, 418557816, 44960878, 1453700, 7814},
{15914, 4495909, 197226603, 2558716162, 12781854516, 27839586777, 27839586777, 12781854516, 2558716162, 197226603, 4495909, 15914}
		

Crossrefs

Programs

  • Mathematica
    Clear[A, a0, b0, n, k, m, t, i];
    A[n_, 1, m_] := 1; A[n_, n_, m_] := 1;
    A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m - 1))*A[n - 1, k, m];
    t[n_, m_, i_] = Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
    m = 2; a = Table[A[n, k, m - 1] - t[n - 1, k - 1, (2*m - 2)], {n, 4, 14}, { k, 2, n - 1}];
    Flatten[a]

Formula

Pascal(n,m,k):
a(n,k,m)=(m*n - m*k + 1)*a(n - 1, k - 1, m) + (m*k - (m - 1))*a(n - 1, k, m);
Narayana(n,m,k):
y(n,m,k)=Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
k=2;
t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).
Previous Showing 11-15 of 15 results.