cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A164521 Primes of the form A162142(k) - 2.

Original entry on oeis.org

3373, 753569, 2146687, 3048623, 6539201, 8120599, 10218311, 17373977, 18609623, 19034161, 32461757, 44738873, 59776469, 69426529, 72511711, 77854481, 88121123, 116930167, 133432829, 299418307, 338608871, 413493623, 458314009, 679151437
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p+2 is the cube of a squarefree semiprime, i.e., such that p+2 = q^3*r^3 where q and r are two distinct primes.

Examples

			3373 + 2 = 3375 = 3^3*5^3. 753569 + 1 = 753571 = 7^3*13^3.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor((N+2)^(1/3)/3))]):
    R:= NULL:
    for i from 1 to nops(P) do
        for j from 1 to i-1 do
          p:= (P[i]*P[j])^3-2;
          if p > N then break fi;
          if isprime(p) then R:= R, p fi
    od od:
    sort([R]); # Robert Israel, Jun 05 2018
  • Mathematica
    f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2, 2]]==3; lst={};Do[p=Prime[n];If[f3[p+2],AppendTo[lst,p]],{n,4,4*9!}];  lst
    csfsQ[n_]:=Module[{c=Surd[n+2,3]},SquareFreeQ[c]&&PrimeOmega[c]==2]; Select[Prime[Range[353*10^5]],csfsQ] (* Harvey P. Dale, Jan 07 2018 *)

Extensions

Edited and examples corrected by R. J. Mathar, Aug 21 2009

A216981 Primes of the form n^7+2.

Original entry on oeis.org

2, 3, 4782971, 1801088543, 1174711139839, 3938980639169, 93206534790701, 425927596977749, 1107984764452583, 2149422977421877, 7416552901015627, 19891027786401119, 307732862434921877, 830512886046548069, 1042842864990234377, 3678954248903875651
Offset: 1

Views

Author

Michel Lagneau, Sep 21 2012

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is n^7+2]; // Vincenzo Librandi, Mar 15 2013
  • Mathematica
    lst={}; Do[p=n^7+2; If[PrimeQ[p], AppendTo[lst, p]], {n, 6!}]; lst
    Select[Table[n^7 + 2, {n, 0, 400}], PrimeQ] (* Vincenzo Librandi, Mar 15 2013 *)
  • PARI
    v=select(n->isprime(n^7+2),vector(2000,n,n-1)); /* A216980 */
    vector(#v, n, v[n]^7+2)
    /* Joerg Arndt, Sep 21 2012 */
    
  • PARI
    select(isprime, vector(2000,n,(n-1)^7+2)) \\ Charles R Greathouse IV, Sep 21 2012
    

A259189 Semiprimes of the form n^3 + 2.

Original entry on oeis.org

10, 218, 514, 731, 1333, 2199, 2746, 3377, 4915, 5834, 6861, 8002, 9263, 12169, 15627, 29793, 35939, 42877, 54874, 59321, 68923, 117651, 125002, 132653, 148879, 185195, 205381, 314434, 405226, 421877, 474554, 531443, 592706, 658505, 704971
Offset: 1

Views

Author

Morris Neene, Jun 20 2015

Keywords

Comments

Intersection of A001358 and A084380. - Michel Marcus, Jun 20 2015
Since there are no squares of the form n^3 + 2, all semiprimes in this sequence are products of distinct primes.
No term in A040034 divides any term in this sequence.

Crossrefs

Cf. A001358 (semiprimes), A084380 (n^3+2), A144953 (primes of same form).
Cf. A237040 (similar sequence with n^3+1).

Programs

  • Magma
    IsSP:=func;[r:n in [1..1000]|IsSP(r) where r is 2+n^3];
    
  • Mathematica
    Select[Range[100]^3 + 2, PrimeOmega[#] == 2 &] (* Alonso del Arte, Jun 20 2015 *)
  • PARI
    is(n)=bigomega(n^3 + 2)==2 \\ Anders Hellström, Sep 07 2015
  • Perl
    use ntheory ":all"; my @sp = grep { scalar(factor($))==2 } map { $**3+2 } 1..100; say "@sp"; # Dana Jacobsen, Sep 07 2015
    

A283698 Numbers k such that {k^2 + 2, k^2 + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.

Original entry on oeis.org

1, 3, 45, 2055, 39033, 48585, 101535, 104553, 112383, 117723, 129315, 152553, 170793, 178095, 234483, 246435, 258093, 272403, 304845, 306885, 365343, 372663, 375813, 405393, 405975, 436425, 456903, 494193, 538965, 551475, 559713, 569805, 570033, 767895, 792903
Offset: 1

Views

Author

K. D. Bajpai, Mar 14 2017

Keywords

Comments

Except a(1), all terms are multiples of 3.
a(n) == {3 or 15} (mod 30) for n>2.

Examples

			a(2) = 3, {3^2 + 2 = 11, 3^2 + 4 = 13 } and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 45, {45^2 + 2 = 2027, 45^2 + 4 = 2029 } and {45^3 + 2 = 91127, 45^3 + 4 = 91129} are twin prime pairs.
		

Crossrefs

Intersection of A086381 and A178337.

Programs

  • Mathematica
    Select[Range[1000000], PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
  • PARI
    for(n=1, 100000, if(isprime(n^2+2) && isprime(n^2+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))

A284058 Numbers k such that {k + 2, k + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.

Original entry on oeis.org

1, 3, 69, 1719, 3555, 8535, 8625, 9765, 10065, 17955, 27939, 32319, 34209, 35445, 39159, 44769, 47415, 55329, 56235, 75615, 85929, 91965, 96219, 97545, 98895, 122385, 122595, 138075, 142695, 143649, 145719, 152025, 191829, 192975, 197955, 200379, 201819, 202059
Offset: 1

Views

Author

K. D. Bajpai, Mar 19 2017

Keywords

Comments

After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 9 (mod 10).
a(n) == {9 or 15} (mod 30) for n>2. - Robert G. Wilson v, Mar 19 2017

Examples

			a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 69, {69 + 2 = 71, 69 + 4 = 73} and {69^3 + 2 = 328511, 69^3 + 4 = 328513} are twin prime pairs.
		

Crossrefs

Intersection of A256388 and A178337.

Programs

  • Mathematica
    Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
  • PARI
    for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))

A214001 Numbers n such that n^2+2, n^3+2, n^4+2 and n^5+2 are all prime.

Original entry on oeis.org

0, 1, 909, 2055, 11925, 145881, 191079, 254199, 358875, 490215, 614241, 642105, 648261, 689655, 864159, 959595, 1030911, 1047585, 1056981, 1150335, 1366971, 1406571, 1669845, 1746525, 2299485, 2357751, 2491809, 2494329, 2629869, 2876859, 3162159, 3220041, 3257595
Offset: 1

Views

Author

Michel Lagneau, Feb 15 2013

Keywords

Comments

n^6+2 is also prime for n = 0, 1, 1746525, 2876859, …

Crossrefs

Programs

  • Mathematica
    Select[Range[3500000], And@@PrimeQ/@(Table[n^i+2, {i, 2, 5}]/.n->#)&]
    Select[Range[0,33*10^5],AllTrue[#^Range[2,5]+2,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 21 2018 *)
Previous Showing 11-16 of 16 results.