A206436
Total sum of even parts in the last section of the set of partitions of n.
Original entry on oeis.org
0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
Offset: 1
Cf.
A002865,
A135010,
A138121,
A138879,
A146076,
A206433,
A206434,
A206435,
A207378,
A336811,
A336812.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
A271342
Sum of all even divisors of all positive integers <= n.
Original entry on oeis.org
0, 2, 2, 8, 8, 16, 16, 30, 30, 42, 42, 66, 66, 82, 82, 112, 112, 138, 138, 174, 174, 198, 198, 254, 254, 282, 282, 330, 330, 378, 378, 440, 440, 476, 476, 554, 554, 594, 594, 678, 678, 742, 742, 814, 814, 862, 862, 982, 982, 1044, 1044, 1128, 1128, 1208, 1208, 1320, 1320, 1380, 1380, 1524, 1524, 1588, 1588, 1714, 1714
Offset: 1
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] and the even divisors of all positive integers <= 6 are [2], [2, 4], [2, 6], so a(6) = 2 + 2 + 4 + 2 + 6 = 16. On the other hand the sum of all the divisors of all positive integers <= 6/2 are [1] + [1 + 2] + [1 + 3] = A024916(3) = 8, so a(6) = 2*8 = 16.
For n = 10, (floor(10/2) = 5) numbers have divisor 2, (floor(10/4) = 2) numbers have divisor 4, ..., (floor(10/10) = 1) numbers have divisor 10. Therefore, a(10) = 5 * 2 + 2 * 4 + 1 * 6 + 1 * 8 + 1 * 10 = 42. - _David A. Corneth_, Jun 06 2017
-
Accumulate@ Array[DivisorSum[#, # &, EvenQ] &, 65] (* Michael De Vlieger, Jun 06 2017 *)
-
a(n) = sum(k=1, n, sumdiv(k, d, (1-d%2)*d)); \\ Michel Marcus, Jun 05 2017
-
a(n) = 2 * sum(k=1, n\2, k*(n\(k<<1))) \\ David A. Corneth, Jun 06 2017
-
def A271342(n): return sum(k*((n>>1)//k) for k in range(1, (n>>1)+1))<<1 # Chai Wah Wu, Apr 26 2023
-
from math import isqrt
def A271342(n): return -(s:=isqrt(m:=n>>1))**2*(s+1) + sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023
A319998
a(n) = Sum_{d|n, d is even} mu(n/d)*d, where mu(n) is Moebius function A008683.
Original entry on oeis.org
0, 2, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 12, 0, 8, 0, 12, 0, 8, 0, 20, 0, 8, 0, 24, 0, 12, 0, 16, 0, 16, 0, 32, 0, 12, 0, 36, 0, 16, 0, 24, 0, 20, 0, 44, 0, 16, 0, 40, 0, 24, 0, 36, 0, 24, 0, 56, 0, 16, 0, 60, 0, 32, 0, 40, 0, 32, 0, 48, 0, 24, 0, 72, 0, 36, 0, 48, 0, 32, 0, 80, 0, 24, 0, 84, 0, 40, 0, 48, 0, 44, 0, 92, 0, 32, 0, 84, 0, 40, 0, 64, 0, 48, 0
Offset: 1
-
Rest[CoefficientList[Series[Sum[2*MoebiusMu[k]*x^(2*k)/(1 - x^(2*k))^2, {k, 1, 100}], {x, 0, 100}], x]] (* Vaclav Kotesovec, Nov 03 2018 *)
-
A319998(n) = sumdiv(n,d,(!(d%2))*moebius(n/d)*d);
-
A319998(n) = if(n%2, 0, 2*eulerphi(n/2));
A323238
Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291750(n) for all n, except for odd numbers n > 1, f(n) = 0.
Original entry on oeis.org
1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 17, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 23, 3, 32, 3, 33, 3, 34, 3, 33, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 40, 3, 41, 3, 42, 3, 43, 3, 44, 3, 31, 3, 33, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3
Offset: 1
Cf.
A003557,
A048250,
A146076,
A291750,
A291751,
A319698,
A319697,
A319701,
A322588,
A323237,
A323241.
-
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
Aux323238(n) = if((n>1)&&(n%2),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
v323238 = rgs_transform(vector(up_to, n, Aux323238(n)));
A323238(n) = v323238[n];
A271343
Triangle read by rows: T(n,k) = A196020(n,k) - A266537(n,k), n>=1, k>=1.
Original entry on oeis.org
1, 1, 5, 1, 1, 0, 9, 3, 1, -2, 1, 13, 5, 0, 1, 0, 0, 17, 7, 3, 1, -6, 0, 1, 21, 9, 0, 0, 1, 0, 3, 0, 25, 11, 0, 0, 1, -10, 0, 3, 29, 13, 7, 0, 1, 1, 0, 0, 0, 0, 33, 15, 0, 0, 0, 1, -14, 3, 5, 0, 37, 17, 0, 0, 0, 1, 0, 0, -2, 3, 41, 19, 11, 0, 0, 1, 1, -18, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0
Offset: 1
Triangle begins:
1;
1;
5, 1;
1, 0;
9, 3;
1, -2, 1;
13, 5, 0;
1, 0, 0;
17, 7, 3;
1, -6, 0, 1;
21, 9, 0, 0;
1, 0, 3, 0;
25, 11, 0, 0;
1, -10, 0, 3;
29, 13, 7, 0, 1;
1, 0, 0, 0, 0;
33, 15, 0, 0, 0;
1, -14, 3, 5, 0;
37, 17, 0, 0, 0;
1, 0, 0, -2, 3;
41, 19, 11, 0, 0, 1;
1, -18, 0, 7, 0, 0;
45, 21, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0;
49, 23, 0, 0, 5, 0;
1, -22, 0, 9, 0, 0;
53, 25, 15, 0, 0, 3;
1, 0, 0, -6, 0, 0, 1;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18 and the sum of odd divisors of 18 is 1 + 3 + 9 = 13. On the other hand, the 18th row of the triangle is 1, -14, 3, 5, 0, so the alternating row sum is 1 -(-14) + 3 - 5 + 0 = 13, equaling the sum of odd divisors of 18.
A319697
Sum of even squarefree divisors of n.
Original entry on oeis.org
0, 2, 0, 2, 0, 8, 0, 2, 0, 12, 0, 8, 0, 16, 0, 2, 0, 8, 0, 12, 0, 24, 0, 8, 0, 28, 0, 16, 0, 48, 0, 2, 0, 36, 0, 8, 0, 40, 0, 12, 0, 64, 0, 24, 0, 48, 0, 8, 0, 12, 0, 28, 0, 8, 0, 16, 0, 60, 0, 48, 0, 64, 0, 2, 0, 96, 0, 36, 0, 96, 0, 8, 0, 76, 0, 40, 0, 112, 0, 12, 0, 84, 0, 64, 0, 88, 0, 24, 0, 48, 0, 48, 0, 96
Offset: 1
-
Table[Total[Select[Divisors[n],EvenQ[#]&&SquareFreeQ[#]&]],{n,100}] (* Harvey P. Dale, May 18 2019 *)
f[2, e_] := 2; f[p_, e_] := p + 1; a[n_] := If[OddQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
-
A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
A193322
Sum of even divisors of lambda(n).
Original entry on oeis.org
0, 0, 2, 2, 6, 2, 8, 2, 8, 6, 12, 2, 24, 8, 6, 6, 30, 8, 26, 6, 8, 12, 24, 2, 36, 24, 26, 8, 48, 6, 48, 14, 12, 30, 24, 8, 78, 26, 24, 6, 84, 8, 64, 12, 24, 24, 48, 6, 64, 36, 30, 24, 84, 26, 36, 8, 26, 48, 60, 6, 144, 48, 8, 30, 24, 12, 96, 30, 24, 24, 96, 8, 182, 78, 36, 26, 48, 24, 112, 6, 80, 84, 84, 8, 30, 64
Offset: 1
a(17) = 30 because lambda(17) = 16 and the sum of the 4 even divisors { 2, 4, 8, 16} is 30.
-
Table[Total[Select[Divisors[CarmichaelLambda[n]], EvenQ[ # ]&]], {n, 62}]
(* Second program: *)
Array[DivisorSum[CarmichaelLambda@ #, # &, EvenQ] &, 86] (* Michael De Vlieger, Dec 04 2017 *)
-
a(n) = sumdiv(lcm(znstar(n)[2]), d, d*(1-(d%2))); \\ Michel Marcus, Mar 18 2016
A193511
a(n) = Sum of even divisors of Omega(n), a(1) = 0.
Original entry on oeis.org
0, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 6, 0, 0, 0, 0, 2, 2, 0, 6, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 6, 0, 2, 2, 6, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 6, 2, 6, 2, 2, 0, 6, 0, 2, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0
Offset: 1
a(16) = 6 because Omega(16) = 4 and the sum of the even divisors of 4 {2, 4} is 6.
A194771
Even numbers that divide the sum of their even divisors.
Original entry on oeis.org
2, 12, 56, 240, 992, 1344, 16256, 60480, 65520, 1047552, 4357080, 47139840, 67100672, 91065600, 285981696, 919636480, 2758909440, 2952609792, 17179738112, 28364878080, 63996791040, 87722956800, 102002360320, 132867440640, 137438691328
Offset: 1
The divisors of 56 are { 1, 2, 4, 7, 8, 14, 28, 56 } and the sum of the even divisors is 2 + 4 + 8 + 14 + 28 + 56 = 112, hence 56 divides 112, so 56 is in the sequence.
A193336
Sum of even divisors of sigma(n).
Original entry on oeis.org
0, 0, 6, 0, 8, 24, 14, 0, 0, 26, 24, 48, 16, 56, 56, 0, 26, 0, 36, 64, 62, 78, 56, 144, 0, 64, 84, 112, 48, 182, 62, 0, 120, 80, 120, 0, 40, 144, 112, 156, 64, 248, 72, 192, 112, 182, 120, 192, 0, 0, 182, 114, 80, 336, 182, 336, 180, 156, 144, 448, 64, 248, 196, 0, 192, 390, 108, 208, 248, 390, 182, 0, 76, 160, 192, 288, 248, 448, 180, 256, 0
Offset: 1
a(14) = 56 because sigma(14) = 24 and the sum of the 6 even divisors {2, 4, 6, 8, 12, 24} is 56.
-
Table[Total[Select[Divisors[DivisorSigma[1,n]], EvenQ[ # ]&]], {n, 53}]
-
A193336(n) = { my(s=sigma(n)); sumdiv(s,d,(!(d%2))*d); }; \\ Antti Karttunen, Nov 18 2017
Comments