cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A206436 Total sum of even parts in the last section of the set of partitions of n.

Original entry on oeis.org

0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

Also total sum of even parts in the partitions of n that do not contain 1 as a part.
From Omar E. Pol, Apr 09 2023: (Start)
Convolution of A002865 and A146076.
a(n) is also the total sum of even divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the sum of even terms in the n-th row of the triangle A207378.
a(n) is also the sum of even terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 16 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Formula

G.f.: (Sum_{i>0} 2*i*x^(2*i)*(1-x)/(1-x^(2*i))) / Product_{i>0} (1-x^i). - Alois P. Heinz, Mar 16 2012
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Alois P. Heinz, Mar 16 2012

A271342 Sum of all even divisors of all positive integers <= n.

Original entry on oeis.org

0, 2, 2, 8, 8, 16, 16, 30, 30, 42, 42, 66, 66, 82, 82, 112, 112, 138, 138, 174, 174, 198, 198, 254, 254, 282, 282, 330, 330, 378, 378, 440, 440, 476, 476, 554, 554, 594, 594, 678, 678, 742, 742, 814, 814, 862, 862, 982, 982, 1044, 1044, 1128, 1128, 1208, 1208, 1320, 1320, 1380, 1380, 1524, 1524, 1588, 1588, 1714, 1714
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2016

Keywords

Comments

a(n) is also the sum of all even divisors of all even positive integers <= n.
a(n) is also the total number of parts in all partitions of all positive integers <= n into an even number of equal parts. - Omar E. Pol, Jun 04 2017
The bisection of this sequence equals twice A024916 (see formulas). - Michel Marcus, Dec 14 2017

Examples

			For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] and the even divisors of all positive integers <= 6 are [2], [2, 4], [2, 6], so a(6) = 2 + 2 + 4 + 2 + 6 = 16. On the other hand the sum of all the divisors of all positive integers <= 6/2 are [1] + [1 + 2] + [1 + 3] = A024916(3) = 8, so a(6) = 2*8 = 16.
For n = 10, (floor(10/2) = 5) numbers have divisor 2, (floor(10/4) = 2) numbers have divisor 4, ..., (floor(10/10) = 1) numbers have divisor 10. Therefore, a(10) = 5 * 2 + 2 * 4 + 1 * 6 + 1 * 8 + 1 * 10 = 42. - _David A. Corneth_, Jun 06 2017
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSum[#, # &, EvenQ] &, 65] (* Michael De Vlieger, Jun 06 2017 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (1-d%2)*d)); \\ Michel Marcus, Jun 05 2017
    
  • PARI
    a(n) = 2 * sum(k=1, n\2, k*(n\(k<<1))) \\ David A. Corneth, Jun 06 2017
    
  • Python
    def A271342(n): return sum(k*((n>>1)//k) for k in range(1, (n>>1)+1))<<1 # Chai Wah Wu, Apr 26 2023
    
  • Python
    from math import isqrt
    def A271342(n): return -(s:=isqrt(m:=n>>1))**2*(s+1) + sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(1) = 0.
a(n) = 2*A024916((n-1)/2), if n is odd and n > 1.
a(n) = 2*A024916(n/2), if n is even.
a(n) = A024916(n) - A078471(n).
For n > 1, a(2*n + 1) = a(2*n). - David A. Corneth, Jun 06 2017
a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 27 2023

A319998 a(n) = Sum_{d|n, d is even} mu(n/d)*d, where mu(n) is Moebius function A008683.

Original entry on oeis.org

0, 2, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 12, 0, 8, 0, 12, 0, 8, 0, 20, 0, 8, 0, 24, 0, 12, 0, 16, 0, 16, 0, 32, 0, 12, 0, 36, 0, 16, 0, 24, 0, 20, 0, 44, 0, 16, 0, 40, 0, 24, 0, 36, 0, 24, 0, 56, 0, 16, 0, 60, 0, 32, 0, 40, 0, 32, 0, 48, 0, 24, 0, 72, 0, 36, 0, 48, 0, 32, 0, 80, 0, 24, 0, 84, 0, 40, 0, 48, 0, 44, 0, 92, 0, 32, 0, 84, 0, 40, 0, 64, 0, 48, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[Sum[2*MoebiusMu[k]*x^(2*k)/(1 - x^(2*k))^2, {k, 1, 100}], {x, 0, 100}], x]] (* Vaclav Kotesovec, Nov 03 2018 *)
  • PARI
    A319998(n) = sumdiv(n,d,(!(d%2))*moebius(n/d)*d);
    
  • PARI
    A319998(n) = if(n%2, 0, 2*eulerphi(n/2));

Formula

a(n) = Sum_{d|n} A059841(d)*A008683(n/d)*d.
a(n) = A000010(n) - A319997(n).
a(2n) = 2*A000010(n), a(2n+1) = 0.
G.f.: Sum_{k>=1} 2*mu(k)*x^(2*k)/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Nov 02 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(2*Pi^2) = 0.151981... . - Amiram Eldar, Nov 12 2022

A323238 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291750(n) for all n, except for odd numbers n > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 17, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 23, 3, 32, 3, 33, 3, 34, 3, 33, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 40, 3, 41, 3, 42, 3, 43, 3, 44, 3, 31, 3, 33, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A146076(i) = A146076(j),
a(i) = a(j) => A319697(i) = A319697(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323238(n) = if((n>1)&&(n%2),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
    v323238 = rgs_transform(vector(up_to, n, Aux323238(n)));
    A323238(n) = v323238[n];

A271343 Triangle read by rows: T(n,k) = A196020(n,k) - A266537(n,k), n>=1, k>=1.

Original entry on oeis.org

1, 1, 5, 1, 1, 0, 9, 3, 1, -2, 1, 13, 5, 0, 1, 0, 0, 17, 7, 3, 1, -6, 0, 1, 21, 9, 0, 0, 1, 0, 3, 0, 25, 11, 0, 0, 1, -10, 0, 3, 29, 13, 7, 0, 1, 1, 0, 0, 0, 0, 33, 15, 0, 0, 0, 1, -14, 3, 5, 0, 37, 17, 0, 0, 0, 1, 0, 0, -2, 3, 41, 19, 11, 0, 0, 1, 1, -18, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2016

Keywords

Comments

Gives an identity for A000593. Alternating sum of row n equals the sum of odd divisors of n, i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A000593(n).
Row n has length A003056(n) hence the column k starts in row A000217(k).
Since the odd-indexed rows of the triangle A266537 contain all zeros then odd-indexed rows of this triangle are the same as the odd-indexed rows of the triangle A196020.
If T(n,k) is the second odd number in the column k then T(n+1,k+1) = 1 is the first element in the column k+1.
Alternating row sums of A196020 give A000203.
Alternating row sums of A266537 give A146076.

Examples

			Triangle begins:
1;
1;
5,   1;
1,   0;
9,   3;
1,  -2,  1;
13,  5,  0;
1,   0,  0;
17,  7,  3;
1,  -6,  0,  1;
21,  9,  0,  0;
1,   0,  3,  0;
25, 11,  0,  0;
1, -10,  0,  3;
29, 13,  7,  0,  1;
1,   0,  0,  0,  0;
33, 15,  0,  0,  0;
1, -14,  3,  5,  0;
37, 17,  0,  0,  0;
1,   0,  0, -2,  3;
41, 19, 11,  0,  0,  1;
1, -18,  0,  7,  0,  0;
45, 21,  0,  0,  0,  0;
1,   0,  3,  0,  0,  0;
49, 23,  0,  0,  5,  0;
1, -22,  0,  9,  0,  0;
53, 25, 15,  0,  0,  3;
1,   0,  0, -6,  0,  0,  1;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18 and the sum of odd divisors of 18 is 1 + 3 + 9 = 13. On the other hand, the 18th row of the triangle is 1, -14, 3, 5, 0, so the alternating row sum is 1 -(-14) + 3 - 5 + 0 = 13, equaling the sum of odd divisors of 18.
		

Crossrefs

A319697 Sum of even squarefree divisors of n.

Original entry on oeis.org

0, 2, 0, 2, 0, 8, 0, 2, 0, 12, 0, 8, 0, 16, 0, 2, 0, 8, 0, 12, 0, 24, 0, 8, 0, 28, 0, 16, 0, 48, 0, 2, 0, 36, 0, 8, 0, 40, 0, 12, 0, 64, 0, 24, 0, 48, 0, 8, 0, 12, 0, 28, 0, 8, 0, 16, 0, 60, 0, 48, 0, 64, 0, 2, 0, 96, 0, 36, 0, 96, 0, 8, 0, 76, 0, 40, 0, 112, 0, 12, 0, 84, 0, 64, 0, 88, 0, 24, 0, 48, 0, 48, 0, 96
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],EvenQ[#]&&SquareFreeQ[#]&]],{n,100}] (* Harvey P. Dale, May 18 2019 *)
    f[2, e_] := 2; f[p_, e_] := p + 1; a[n_] := If[OddQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);

Formula

a(n) = Sum_{d|n} A059841(d)*A008966(d)*d.
a(n) = A048250(n) - A206787(n).

A193322 Sum of even divisors of lambda(n).

Original entry on oeis.org

0, 0, 2, 2, 6, 2, 8, 2, 8, 6, 12, 2, 24, 8, 6, 6, 30, 8, 26, 6, 8, 12, 24, 2, 36, 24, 26, 8, 48, 6, 48, 14, 12, 30, 24, 8, 78, 26, 24, 6, 84, 8, 64, 12, 24, 24, 48, 6, 64, 36, 30, 24, 84, 26, 36, 8, 26, 48, 60, 6, 144, 48, 8, 30, 24, 12, 96, 30, 24, 24, 96, 8, 182, 78, 36, 26, 48, 24, 112, 6, 80, 84, 84, 8, 30, 64
Offset: 1

Views

Author

Michel Lagneau, Jul 22 2011

Keywords

Comments

Lambda is the function in A002322.

Examples

			a(17) = 30 because lambda(17) = 16 and the sum of the 4 even divisors { 2, 4, 8, 16} is 30.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[CarmichaelLambda[n]], EvenQ[ # ]&]], {n, 62}]
    (* Second program: *)
    Array[DivisorSum[CarmichaelLambda@ #, # &, EvenQ] &, 86] (* Michael De Vlieger, Dec 04 2017 *)
  • PARI
    a(n) = sumdiv(lcm(znstar(n)[2]), d, d*(1-(d%2))); \\ Michel Marcus, Mar 18 2016

Formula

a(n) = A146076(A002322(n)). - Michel Marcus, Mar 18 2016

Extensions

More terms from Antti Karttunen, Dec 04 2017

A193511 a(n) = Sum of even divisors of Omega(n), a(1) = 0.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 6, 0, 0, 0, 0, 2, 2, 0, 6, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 6, 0, 2, 2, 6, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 6, 2, 6, 2, 2, 0, 6, 0, 2, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2011

Keywords

Comments

Omega(n) = number of prime divisors of n counted with multiplicity : A001222 (also called bigomega(n)).
a(1) = 0 by convention.

Examples

			a(16) = 6 because Omega(16) = 4 and the sum of the even divisors of 4 {2, 4} is 6.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[PrimeOmega[n]], EvenQ[ # ]&]], {n, 58}]
  • PARI
    A146076(n) = if(n%2, 0, 2*sigma(n/2)); \\ This function from Michel Marcus, Apr 01 2015
    A193511(n) = if(1==n,0,A146076(bigomega(n))); \\ Antti Karttunen, Jul 23 2017

Formula

From Antti Karttunen, Jul 23 2017: (Start)
a(1) = 0, for n > 1, a(n) = A146076(A001222(n)).
a(n) + A193512(n) = A290080(n).
(End)

Extensions

Description clarified by Antti Karttunen, Jul 23 2017

A194771 Even numbers that divide the sum of their even divisors.

Original entry on oeis.org

2, 12, 56, 240, 992, 1344, 16256, 60480, 65520, 1047552, 4357080, 47139840, 67100672, 91065600, 285981696, 919636480, 2758909440, 2952609792, 17179738112, 28364878080, 63996791040, 87722956800, 102002360320, 132867440640, 137438691328
Offset: 1

Views

Author

Michel Lagneau, Sep 02 2011

Keywords

Comments

Since the sum of even divisors of an odd number is zero, every odd number divides its sum of even divisors. - Nathaniel Johnston, Sep 02 2011

Examples

			The divisors of 56 are { 1, 2, 4, 7, 8, 14, 28, 56 } and the sum of the even divisors is 2 + 4 + 8 + 14 + 28 + 56 = 112, hence 56 divides 112, so 56 is in the sequence.
		

Crossrefs

Cf. A146076.

Programs

  • Maple
    with(numtheory):for n from 1 to 10000000 do if(sigma(n) mod n = 0)then print(2*n):fi:od:

Formula

a(n) = 2*A007691(n).

Extensions

a(11)-a(25) from Nathaniel Johnston, Sep 02 2011

A193336 Sum of even divisors of sigma(n).

Original entry on oeis.org

0, 0, 6, 0, 8, 24, 14, 0, 0, 26, 24, 48, 16, 56, 56, 0, 26, 0, 36, 64, 62, 78, 56, 144, 0, 64, 84, 112, 48, 182, 62, 0, 120, 80, 120, 0, 40, 144, 112, 156, 64, 248, 72, 192, 112, 182, 120, 192, 0, 0, 182, 114, 80, 336, 182, 336, 180, 156, 144, 448, 64, 248, 196, 0, 192, 390, 108, 208, 248, 390, 182, 0, 76, 160, 192, 288, 248, 448, 180, 256, 0
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Comments

sigma(n) = sum of divisors of n: A000203 (also called sigma_1(n)).

Examples

			a(14) = 56 because sigma(14) = 24 and the sum of the 6 even divisors {2, 4, 6, 8, 12, 24} is 56.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[DivisorSigma[1,n]], EvenQ[ # ]&]], {n, 53}]
  • PARI
    A193336(n) = { my(s=sigma(n)); sumdiv(s,d,(!(d%2))*d); }; \\ Antti Karttunen, Nov 18 2017

Formula

a(n) + A193337(n) = A051027(n). - Antti Karttunen, Nov 18 2017
From Amiram Eldar, Mar 30 2024: (Start)
a(n) = A146076(A000203(n)).
a(n) = 0 if and only if n is in A028982. (End)

Extensions

More terms from Antti Karttunen, Nov 18 2017
Previous Showing 11-20 of 33 results. Next