cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A173128 a(n) = cosh(2*n*arcsinh(n)).

Original entry on oeis.org

1, 3, 161, 27379, 9478657, 5517751251, 4841332221601, 5964153172084899, 9814664424981012481, 20791777842234580902499, 55106605639755476546020001, 178627672869645203363556318483, 695165908550906808156689590141441
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Maple
    seq(expand( (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n))), n=0..30); # Robert Israel, Apr 05 2016
  • Mathematica
    Round[Table[Cosh[2 n ArcSinh[n]], {n, 0, 20}]] (* Artur Jasinski *)
    Round[Table[1/2 (x - Sqrt[1 + x^2])^(2 x) + 1/2 (x + Sqrt[1 + x^2])^(2 x), {x, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n^2+1)} \\ Seiichi Manyama, Dec 29 2018

Formula

a(n) = (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2+1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018
a(n) = T_{n}(2*n^2+1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

A146535 Numerator of (2*n-1)/3.

Original entry on oeis.org

1, 1, 5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 25, 9, 29, 31, 11, 35, 37, 13, 41, 43, 15, 47, 49, 17, 53, 55, 19, 59, 61, 21, 65, 67, 23, 71, 73, 25, 77, 79, 27, 83, 85, 29, 89, 91, 31, 95, 97, 33, 101, 103, 35, 107, 109, 37, 113, 115, 39, 119, 121, 41, 125, 127, 43, 131, 133, 45
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2008

Keywords

Comments

From Jaroslav Krizek, May 28 2010: (Start)
a(n+1) = numerators of antiharmonic mean of the first n positive integers for n >= 1.
See A169609(n-1) - denominators of antiharmonic mean of the first n positive integers for n >= 1. (End)

Examples

			Fractions begin with 1/6, 1/2, 5/6, 7/6, 3/2, 11/6, 13/6, 5/2, 17/6, 19/6, 7/2, 23/6, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[(2 n - 1)/6], {n, 1, 100}]
    LinearRecurrence[{0,0,2,0,0,-1},{1,1,5,7,3,11},100] (* Harvey P. Dale, Feb 24 2015 *)
  • PARI
    a(n) = numerator((2*n-1)/3); \\ Altug Alkan, Apr 13 2018

Formula

From R. J. Mathar, Nov 21 2008: (Start)
a(n) = 2*a(n-3) - a(n-6).
G.f.: x(1+x)(1+5x^2+x^4)/((1-x)^2*(1+x+x^2)^2). (End)
Sum_{k=1..n} a(k) ~ (7/9) * n^2. - Amiram Eldar, Apr 04 2024
a(n) = (2*n - 1)*(7 - A061347(n) +3*A102283(n))/9. - Stefano Spezia, Feb 14 2025

Extensions

Name edited by Altug Alkan, Apr 13 2018

A173130 a(n) = Cosh[(2 n - 1) ArcCosh[n]].

Original entry on oeis.org

0, 1, 26, 3363, 937444, 456335045, 343904160606, 371198523608647, 543466014742175624, 1036834190110356583689, 2499384905955651114739810, 7429238104512325157021090411, 26695718139185294187938997247212
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(2*n-2) * n^(2*n-1). - Vaclav Kotesovec, Apr 05 2016

A173131 a(n) = (Cosh[(2n-1)ArcSinh[n]])^2.

Original entry on oeis.org

1, 2, 1445, 19740250, 1361599599377, 298514762397852026, 160545187370375075046277, 179656719395983409634002348450, 373368546362937441101158606899394625
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Cosh[(2 n - 1) ArcSinh[n]]^2], {n, 0, 10}] (* Artur Jasinski *)

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A173148 a(n) = cos(2*n*arccos(sqrt(n))).

Original entry on oeis.org

1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Comments

The Chebyshev polynomial T_n is defined by cos(nx) = T_n(cos(x)). So T_2n(cos(x)) = cos(2nx) = cos^2(nx) - 1 = (T_n(x))^2 - 1 consists of only even powers of x. As a result, a(n) = T_2n(sqrt(n)) is an integer. - Michael B. Porter, Jan 01 2019

Crossrefs

Programs

  • GAP
    a:=List([0..20],n->Sum([0..n],k->Binomial(2*n,2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019
    
  • Magma
    [&+[Binomial(2*n,2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
  • Mathematica
    Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018
    
  • PARI
    {a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018
    

Formula

a(n) ~ exp(-1/2) * 2^(2*n-1) * n^n. - Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n-1)^(n-k)*n^k. - Seiichi Manyama, Dec 27 2018
a(n) = cosh(2*n*arccosh(sqrt(n))). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2*n}(sqrt(n)) = T_{n}(2*n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018
a(n) = A322790(n-1, n) for n > 0. - Seiichi Manyama, Dec 29 2018

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A173133 a(n) = Sinh[(2n-1) ArcSinh[n]].

Original entry on oeis.org

0, 1, 38, 4443, 1166876, 546365045, 400680904674, 423859315570607, 611038907405197432, 1151555487914640463209, 2748476184146759127540190, 8102732939160371170806346243, 28915133156938367486730067779348
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcSinh[n]]], {n, 0, 20}] (* Artur Jasinski *)
    Round[Table[1/2 (n - Sqrt[1 + n^2])^(2 n - 1) + 1/2 (n + Sqrt[1 + n^2])^(2 n - 1), {n, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)

Formula

a(n) = 1/2 (n - sqrt(1 + n^2))^(2 n - 1) + 1/2 (n + sqrt(1 + n^2))^(2 n - 1). - Artur Jasinski, Feb 14 2010

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.

Original entry on oeis.org

1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(-1) = -1. - Artur Jasinski, Feb 10 2010
5*a(n) gives the x-values in the solution to the Pell equation x^2 - 26*y^2 = -1. - Colin Barker, Aug 24 2013

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
    CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 102*x + x^2).
a(n) = S(n, 2*51) + S(n-1, 2*51) = S(2*n, 2*sqrt(26)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 5*i)/(5*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=103. - Philippe Deléham, Nov 18 2008
a(n) = (1/5)*sinh((2*n-1)*arcsinh(5)), n >= 1. - Artur Jasinski, Feb 10 2010

Extensions

More terms from Harvey P. Dale, Aug 20 2017

A173170 a(n) = sin^2((2n-1)*arcsin(sqrt n)) = 1 - sin^2( (2n-1)*arccos(sqrt n)).

Original entry on oeis.org

0, 1, 50, 23763, 25421764, 48225038405, 142786923879606, 608447515452613207, 3527836867501829594888, 26710782540478226038759689, 255922222218837615280903143610, 3026917140685147530327256796600411
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sin[(2 n - 1) ArcSin[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)

Formula

a(n) ~ exp(-1) * 2^(4*n-4) * n^(2*n-1). - Vaclav Kotesovec, Apr 05 2016

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A173174 a(n) = cosh(2*n*arcsinh(sqrt(n))).

Original entry on oeis.org

1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
  • Maple
    A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
    Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
    

Formula

a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k. - Seiichi Manyama, Dec 26 2018
a(n) = T_{n}(2*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

Extensions

More terms from Seiichi Manyama, Dec 26 2018
Previous Showing 11-20 of 24 results. Next