cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 69 results. Next

A364913 Number of integer partitions of n having a part that can be written as a nonnegative linear combination of the other (possibly equal) parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 12, 20, 27, 39, 51, 74, 95, 130, 169, 225, 288, 378, 479, 617, 778, 990, 1239, 1560, 1938, 2419, 2986, 3696, 4538, 5575, 6810, 8319, 10102, 12274, 14834, 17932, 21587, 25963, 31120, 37275, 44513, 53097, 63181, 75092, 89030, 105460, 124647
Offset: 0

Views

Author

Gus Wiseman, Aug 20 2023

Keywords

Comments

Includes all non-strict partitions (A047967).

Examples

			The a(0) = 0 through a(7) = 12 partitions:
  .  .  (11)  (21)   (22)    (41)     (33)      (61)
              (111)  (31)    (221)    (42)      (322)
                     (211)   (311)    (51)      (331)
                     (1111)  (2111)   (222)     (421)
                             (11111)  (321)     (511)
                                      (411)     (2221)
                                      (2211)    (3211)
                                      (3111)    (4111)
                                      (21111)   (22111)
                                      (111111)  (31111)
                                                (211111)
                                                (1111111)
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(12).
The partition (6,4,3,2) has 6 = 4+2, or 6 = 3+3, or 6 = 2+2+2, or 4 = 2+2, so is counted under a(15).
		

Crossrefs

The strict case is A364839.
For sums instead of combinations we have A364272, binary A364670.
The complement in strict partitions is A364350.
For subsets instead of partitions we have A364914, complement A326083.
Allowing equal parts gives A365068, complement A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A365006 = no strict partitions w/ pos linear combination.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#||Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,15}]

Formula

a(n) + A364915(n) = A000041(n).

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]

A367213 Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions are necessarily incomplete (A365924).
Are there any decreases after the initial terms?

Examples

			The a(3) = 1 through a(9) = 8 partitions:
  (3)  (4)    (5)    (6)      (7)      (8)        (9)
       (3,1)  (4,1)  (3,3)    (4,3)    (4,4)      (5,4)
                     (5,1)    (6,1)    (5,3)      (6,3)
                     (2,2,2)  (5,1,1)  (7,1)      (8,1)
                     (4,1,1)           (4,2,2)    (4,4,1)
                                       (6,1,1)    (5,2,2)
                                       (5,1,1,1)  (7,1,1)
                                                  (6,1,1,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237667 counts sum-free partitions, sum-full A237668.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Extensions

a(41)-a(54) from Chai Wah Wu, Nov 13 2023

A288728 Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1].

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 18, 19, 47, 43, 102, 116, 238, 240, 553, 554, 1185, 1259, 2578, 2607, 5873, 5526, 11834, 12601, 24692, 24390, 53735, 52534, 107445, 107330, 218727, 215607, 461367, 427778, 891039, 910294, 1804606, 1706828, 3695418, 3411513, 7136850, 6892950
Offset: 1

Views

Author

Ben Burns, Jun 14 2017

Keywords

Comments

Using the standard definition of sum-free set, this is simply the difference of successive terms in A007865.
Number of subsets of {1..n} containing n but not containing the sum of any other two elements (repeats allowed). Also the number of sum-free sets (A007865) with maximum n. - Gus Wiseman, Aug 12 2023

Examples

			1 can be added to {};
2 can be added to {} but not {1};
3 can be added to {},{1},{2};
4 can be added to {},{1},{3} but not {2},{1,3},{2,3}.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(1) = 1 through a(7) = 18 sum-free sets with maximum n:
  {1}  {2}  {3}    {4}    {5}      {6}      {7}
            {1,3}  {1,4}  {1,5}    {1,6}    {1,7}
            {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                          {3,5}    {4,6}    {3,7}
                          {4,5}    {5,6}    {4,7}
                          {1,3,5}  {1,4,6}  {5,7}
                          {3,4,5}  {2,5,6}  {6,7}
                                   {4,5,6}  {1,3,7}
                                            {1,4,7}
                                            {1,5,7}
                                            {2,3,7}
                                            {2,6,7}
                                            {3,5,7}
                                            {4,5,7}
                                            {4,6,7}
                                            {5,6,7}
                                            {1,3,5,7}
                                            {4,5,6,7}
(End)
		

Crossrefs

Cf. A007865.
For non-binary sum-free subsets of {1..n} we have A237667.
For sum-free partitions we have A364345, without re-using parts A236912.
Without re-using parts we have A364755, diffs of A085489 (non-bin A151897).
The complement without re-using parts is A364756, differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* Gus Wiseman, Aug 12 2023 *)

Formula

a(n) = A007865(n) - A007865(n-1).

A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 16, 12, 32, 32, 104, 48, 256, 208, 448, 448, 1568, 896, 3840, 2368, 6912, 7680, 22912, 10752, 50688, 44800, 104448, 88064, 324096, 165888, 780288, 541696, 1458176, 1519616, 4044800, 2220032, 10838016, 8744960, 20250624, 16433152, 62267392, 34865152
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8).
The a(1) = 1 through a(8) = 12 subsets:
  {}  {}  {}   {}   {}     {}     {}       {}
          {2}  {3}  {2}    {4}    {2}      {3}
                    {3}    {5}    {3}      {5}
                    {4}    {4,5}  {4}      {6}
                    {2,4}         {5}      {7}
                    {3,4}         {6}      {3,6}
                                  {2,4}    {3,7}
                                  {2,6}    {5,6}
                                  {3,5}    {5,7}
                                  {3,6}    {6,7}
                                  {4,5}    {3,6,7}
                                  {4,6}    {5,6,7}
                                  {5,6}
                                  {2,4,6}
                                  {3,5,6}
                                  {4,5,6}
		

Crossrefs

The complement is counted by A365073, without n A365542.
The binary complement is A365314, positive A365315.
The binary case is A365320, positive A365321.
For positive coefficients we have A365322, complement A088314.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A288728 counts binary sum-free subsets, first differences of A007865.
A365046 counts combination-full subsets, first differences of A364914.
A365071 counts sum-free subsets, first differences of A151897.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}]

Formula

a(n) = 2^n - A365073(n).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 10 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {2,3}    {2,3}
                  {1,2,3}  {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A237668 counts sum-full partitions, ranks A364532.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Formula

a(n) = 2^n - A367217(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367222 Number of subsets of {1..n} whose cardinality can be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

1, 2, 3, 6, 12, 24, 49, 101, 207, 422, 859, 1747, 3548, 7194, 14565, 29452, 59496, 120086, 242185, 488035, 982672, 1977166, 3975508, 7989147, 16047464, 32221270, 64674453, 129775774, 260337978, 522124197, 1046911594, 2098709858, 4206361369, 8429033614, 16887728757, 33829251009, 67755866536, 135687781793, 271693909435
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			The set {1,2,4} has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(4).
The a(0) = 1 through a(4) = 12 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {1,3}    {1,3}
                  {2,3}    {1,4}
                  {1,2,3}  {2,3}
                           {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A326020 counts complete subsets.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts subsets containing two distinct elements summing to k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#], Union[#]]!={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367222(n):
        c, mlist = 1, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        c += 1
                        break
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367223(n).

Extensions

a(13)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025
Previous Showing 21-30 of 69 results. Next