A279847
a(n) = Sum_{k=1..n} k^2*(floor(n/k) - 1).
Original entry on oeis.org
0, 1, 2, 7, 8, 22, 23, 44, 54, 84, 85, 151, 152, 206, 241, 326, 327, 458, 459, 605, 664, 790, 791, 1065, 1091, 1265, 1356, 1622, 1623, 2023, 2024, 2365, 2496, 2790, 2865, 3480, 3481, 3847, 4026, 4636, 4637, 5373, 5374, 6000, 6341, 6875, 6876, 7982, 8032, 8787, 9086, 9952, 9953, 11137, 11284
Offset: 1
For n = 7 the proper divisors of the first seven positive integers are {0}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1} so a(7) = 0^2 + 1^2 + 1^2 + 1^2 + 2^2 + 1 ^2 + 1^2 + 2^2 + 3^2 + 1^2 = 23.
-
Table[Sum[k^2 (Floor[n/k] - 1), {k, 1, n}], {n, 55}]
Table[Sum[DivisorSigma[2, k] - k^2, {k, 1, n}], {n, 55}]
-
a(n) = sum(k=1, n, k^2*(floor(n/k)-1)) \\ Felix Fröhlich, Dec 20 2016
-
from math import isqrt
def A279847(n): return (-n*(n+1)*(2*n+1)-(s:=isqrt(n))**2*(s+1)*(2*s+1) + sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
A299692
a(n) is the total area that is visible in the perspective view of the stepped pyramid with n levels described in A245092.
Original entry on oeis.org
3, 10, 20, 35, 51, 75, 97, 128, 159, 197, 231, 283, 323, 375, 429, 492, 544, 619, 677, 759, 833, 913, 983, 1091, 1172, 1266, 1360, 1472, 1560, 1692, 1786, 1913, 2027, 2149, 2267, 2430, 2542, 2678, 2812, 2982, 3106, 3286, 3416, 3588, 3756, 3920, 4062, 4282, 4437, 4630, 4804, 5006, 5166, 5394, 5576, 5808, 6002
Offset: 1
For n = 3 the areas of the terraces of the first three levels starting from the top of the stepped pyramid are 1, 3 and 4 respectively. On the other hand the areas of the vertical sides that are visible are [1, 1], [2, 2], [2, 1, 1, 2], or in successive levels 2, 4, 6 respectively. Hence the total area that is visible is equal to 1 + 3 + 4 + 2 + 4 + 6 = 8 + 12 = 20, so a(3) = 20.
For n = 16 the total number of horizontal and vertical cells that are visible are 220 and 272 respectively. So a(16) = 220 + 272 = 492 (see the link).
Cf.
A002378,
A024916,
A045943,
A072691,
A153485,
A196020,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A244050,
A245092,
A262626,
A328366.
-
Accumulate[Table[DivisorSigma[1, n] + 2*n, {n, 1, 50}]] (* Amiram Eldar, Mar 21 2024 *)
-
a(n) = sum(k=1, n, n\k*k) + n*(n+1); \\ Michel Marcus, Jun 21 2018
-
from math import isqrt
def A299692(n): return n*(n+1)+(-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023
A235799
a(n) = n^2 - sigma(n).
Original entry on oeis.org
0, 1, 5, 9, 19, 24, 41, 49, 68, 82, 109, 116, 155, 172, 201, 225, 271, 285, 341, 358, 409, 448, 505, 516, 594, 634, 689, 728, 811, 828, 929, 961, 1041, 1102, 1177, 1205, 1331, 1384, 1465, 1510, 1639, 1668, 1805, 1852, 1947, 2044, 2161, 2180, 2344, 2407
Offset: 1
From _Omar E. Pol, Apr 04 2021: (Start)
Illustration of initial terms in the first quadrant for n = 1..6:
.
. y| _ _
. y| _ _ |_ _ _ |_ |
. y| _ |_ _ _| | | | |_|
. y| _ |_ _ |_| | _| | |_ _
. y| |_ _|_| | |_ | | | |
. y| |_ | | | | | | | |
. |_ _ |_|_ _ |_ _|_ _ |_ _ _|_ _ |_ _ _ _|_ _ |_ _ _ _ _|_ _
. x x x x x x
.
n: 1 2 3 4 5 6
a(n): 0 1 5 9 19 24
.
Illustration of initial terms in the first quadrant for n = 7..9:
. y| _ _ _ _
. y| _ _ _ |_ _ _ _ _| |
. y| _ _ _ |_ _ _ _ | | | _ _ |
. |_ _ _ _| | | | |_ | | |_ | |
. | | | |_ |_ _| | |_| _|
. | _| | |_ _ | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_ _ _ _ _ _|_ _ |_ _ _ _ _ _ _|_ _ |_ _ _ _ _ _ _ _|_ _
. x x x
.
n: 7 8 9
a(n): 41 49 68
.
For n = 9 the figures 1, 2 and 3 below show respectively the three stages described in the Comments section as follows:
.
. y|_ _ _ _ _ 5 y|_ _ _ _ _ _ _ _ _ y| _ _ _ _
. |_ _ _ _ _| |_ _ _ _ _| | |_ _ _ _ _| |
. | |_ _ 3 | |_ _ R | | _ _ |
. | |_ | | |_ | | | |_ | |
. | |_|_ _ 5 | |_|_ _| | |_| _|
. | | | | | | | |
. | Q | | | Q | | | |
. | | | | | | | |
. | | | | | | | |
. |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _|_ _
. x x x
. Figure 1. Figure 2. Figure 3.
. Symmetric Symmetric Symmetric
. representation representation representation
. of sigma(9) of sigma(9) of a(9) = 68
. A000203(9) = 13 A000203(9) = 13
. and of and of
. Q = A024916(8) = 56 R = A004125(9) = 12
. Q = A024916(8) = 56
.
Note that the symmetric representation of a(9) contains a hole formed by three cells because these three cells were the central part of the symmetric representation of sigma(9). (End)
Cf.
A000040,
A000079,
A000203,
A000217,
A000290,
A000396,
A004125,
A024816,
A024916,
A067436,
A120444,
A153485,
A196020,
A236104,
A236112,
A237593,
A244048,
A342344.
-
[n^2 - DivisorSigma(1,n): n in [1..50]]; // G. C. Greubel, Oct 31 2018
-
Table[n^2-DivisorSigma[1,n],{n,50}] (* Harvey P. Dale, Sep 02 2016 *)
-
vector(50, n, n^2 - sigma(n)) \\ G. C. Greubel, Oct 31 2018
A236540
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, except the first column which lists the triangular numbers, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
0, 1, 3, 1, 6, 1, 10, 4, 15, 4, 1, 21, 9, 1, 28, 9, 1, 36, 16, 4, 45, 16, 4, 1, 55, 25, 4, 1, 66, 25, 9, 1, 78, 36, 9, 1, 91, 36, 9, 4, 105, 49, 16, 4, 1, 120, 49, 16, 4, 1, 136, 64, 16, 4, 1, 153, 64, 25, 9, 1, 171, 81, 25, 9, 1, 190, 81, 25, 9, 4, 210, 100, 36, 9, 4, 1
Offset: 1
Triangle begins:
0;
1;
3, 1;
6, 1;
10, 4;
15, 4, 1;
21, 9, 1;
28, 9, 1;
36, 16, 4;
45, 16, 4, 1;
55, 25, 4, 1;
66, 25, 9, 1;
78, 36, 9, 1;
91, 36, 9, 4;
105, 49, 16, 4, 1;
120, 49, 16, 4, 1;
136, 64, 16, 4, 1;
153, 64, 25, 9, 1;
171, 81, 25, 9, 1;
190, 81, 25, 9, 4;
210, 100, 36, 9, 4, 1;
231, 100, 36, 16, 4, 1;
253, 121, 36, 16, 4, 1;
276, 121, 49, 16, 4, 1;
...
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] hence the sum of all aliquot divisors is [0] + [1] + [1] + [1+2] + [1] + [1+2+3] = 0 + 1 + 1 + 3 + 1 + 6 = 12. On the other hand the 6th row of triangle is 15, 4, 1, therefore the alternating row sum is 15 - 4 + 1 = 12, equaling the sum of all aliquot divisors of all positive integers <= 6.
Cf.
A000203,
A000217,
A001065,
A008794,
A003056,
A153485,
A196020,
A211547,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236104,
A236106,
A236112,
A237591,
A237593,
A286001.
A284755
Numbers n such that the average of all proper divisors of all positive integers <= n is an integer.
Original entry on oeis.org
2, 3, 63, 1249, 4696, 1200509
Offset: 1
Cf.
A000005,
A000203,
A001065,
A002541,
A003601,
A023884,
A023886,
A027751,
A153485,
A226647,
A284288.
-
Select[Range[2, 1300000], Mod[Sum[DivisorSigma[1, k] - k, {k, 1, #}], Sum[DivisorSigma[0, k] - 1, {k, 1, #}]] == 0 &]
A339370
a(n) = Sum_{k=1..floor(n/2)} (n-k) * floor((n-k)/k).
Original entry on oeis.org
0, 1, 4, 11, 19, 36, 50, 76, 102, 138, 165, 227, 262, 318, 381, 460, 510, 614, 672, 791, 889, 990, 1064, 1249, 1353, 1477, 1610, 1790, 1891, 2133, 2244, 2455, 2626, 2798, 2983, 3312, 3452, 3649, 3857, 4198, 4356, 4715, 4883, 5190, 5514, 5763, 5949, 6446, 6686, 7045
Offset: 1
-
Table[Sum[(n - k)*Floor[(n - k)/k], {k, Floor[n/2]}], {n, 60}]
-
a(n) = sum(k=1, n\2, (n-k) * ((n-k)\k)); \\ Michel Marcus, Dec 02 2020
-
from math import isqrt
def A339370(n): return n*(1-n)+(s:=isqrt(n))**2*(s+1-(n<<1))-sum((q:=n//k)*((k-(n<<1)<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 27 2023
A342344
Number of parts in the symmetric representation of antisigma(n).
Original entry on oeis.org
0, 0, 2, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2
Offset: 1
Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 1..6:
. y| _ _
. y| _ _ | _ _ |_ |
. y| _ | _ _| | | |_ | |_|
. y| _ | _ |_| | |_ _| | |_|_ _
. y| | _|_| | |_|_ | |_ | | |_ |
. y| | | |_| | |_| | |_| | |_|
. |_ _ |_ _ _ |_ _ _ _ |_ _ _ _ _ |_ _ _ _ _ _ |_ _ _ _ _ _ _
. x x x x x x
.
n: 1 2 3 4 5 6
a(n): 0 0 2 3 1 3
AS(n): 0 0 2 3 9 9
.
Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 7..9:
. y| _ _ _ _
. y| _ _ _ | _ _ _ _| |
. y| _ _ _ | _ _ _ | | | |_ _ _ |
. | _ _ _| | | |_ | |_ | | |_ |_ | |
. | |_ | | |_ |_ |_ _| | |_ |_| _|
. | |_ _| | |_ |_ _ | |_ |
. | |_ | | |_ | | |_ |
. | |_ | | |_ | | |_ |
. | |_| | |_| | |_|
. |_ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ _
. x x x
.
n: 7 8 9
a(n): 1 2 1
AS(n): 20 21 32
.
For n = 9 the figures 1, 2 and 3 below show respectively the three stages described in the Comments section as follows:
.
. y|_ _ _ _ _ 5 y|_ _ _ _ _ _ _ _ _ y| _ _ _ _
. |_ _ _ _ _| |_ _ _ _ _| | | _ _ _ _| |
. | |_ _ 3 | |_ |_ _ R | | |_ _ _ |
. | |_ | | |_ |_ | | | |_ |_ | |
. | |_|_ _ 5 | |_ T |_|_ _| | |_ |_| _|
. | | | | |_ | | | |_ |
. | Q | | | |_ | | | |_ |
. | | | | W |_ | | | |_ |
. | | | | |_| | | |_|
. |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _ _ _
. x x x
. Figure 1. Figure 2. Figure 3.
. Symmetric Symmetric Symmetric
. representation representation representation
. of sigma(9) of sigma(9) of antisigma(9)
. A000203(9) = 13 A000203(9) = 13 A024816(9) = 32
. and of and of
. Q = A024916(8) = 56 R = A004125(9) = 12
. T = A244048(9) = 20
. T = A153485(8) = 20
. W = A000217(8) = 36
.
Note that the symmetric representation of antisigma(9) contains a hole formed by three cells because these three cells were the central part of the symmetric representation of sigma(9).
Cf.
A000203,
A000217,
A000290,
A004125,
A024816,
A024916,
A153485,
A174973,
A236104,
A237270,
A237271,
A237593,
A238443,
A239660,
A239931,
A239932,
A239933,
A239934,
A244048,
A262259.
A244578
Sum of all aliquot divisors of all positive integers <= prime(n).
Original entry on oeis.org
1, 2, 6, 13, 33, 50, 85, 107, 155, 255, 298, 433, 523, 578, 678, 873, 1076, 1185, 1421, 1581, 1705, 1968, 2159, 2494, 3002, 3250, 3365, 3615, 3788, 4072, 5152, 5449, 5990, 6141, 7057, 7280, 7917, 8507, 8847, 9553, 10164, 10531, 11646, 11963, 12408, 12679
Offset: 1
A328366
a(n) is the surface area of the stepped pyramid with n levels described in A245092.
Original entry on oeis.org
6, 20, 40, 70, 102, 150, 194, 256, 318, 394, 462, 566, 646, 750, 858, 984, 1088, 1238, 1354, 1518, 1666, 1826, 1966, 2182, 2344, 2532, 2720, 2944, 3120, 3384, 3572, 3826, 4054, 4298, 4534, 4860, 5084, 5356, 5624, 5964, 6212, 6572, 6832, 7176, 7512, 7840, 8124, 8564, 8874, 9260, 9608, 10012
Offset: 1
For n = 1 the first level of the stepped pyramid is a cube, so a(1) = 6.
Cf.
A000217,
A002378,
A013661,
A024916,
A045943,
A046092,
A153485,
A175254 (volume),
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A245092,
A262626,
A299692,
A327329.
-
s=0;Do[s=s+4*DivisorSigma[1,n];t=2n(n+1);Print[(s/2)+t],{n,1,8000}] (* Metin Sariyar, Nov 20 2019 *)
-
from math import isqrt
def A328366(n): return (n*(n+1)<<1)-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023
A346877
Sum of the divisors, except for the largest, of the n-th odd number.
Original entry on oeis.org
0, 1, 1, 1, 4, 1, 1, 9, 1, 1, 11, 1, 6, 13, 1, 1, 15, 13, 1, 17, 1, 1, 33, 1, 8, 21, 1, 17, 23, 1, 1, 41, 19, 1, 27, 1, 1, 49, 19, 1, 40, 1, 23, 33, 1, 21, 35, 25, 1, 57, 1, 1, 87, 1, 1, 41, 1, 29, 65, 25, 12, 45, 31, 1, 47, 1, 27, 105, 1, 1, 51, 25, 35, 81, 1, 1, 81, 37
Offset: 1
For n = 5 the 5th odd number is 9 and the divisors of 9 are [1, 3, 9] and the sum of the divisors of 9 except for the largest is 1 + 3 = 4, so a(5) = 4.
Cf.
A000203,
A005408,
A008438,
A057427,
A153485,
A237593,
A245092,
A244049,
A326123,
A346869,
A346878,
A346879,
A347154.
-
a[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Array[a, 100] (* Amiram Eldar, Aug 20 2021 *)
Total[Most[Divisors[#]]]&/@Range[1,161,2] (* Harvey P. Dale, Sep 29 2024 *)
-
a(n) = sigma(2*n-1) - (2*n-1); \\ Michel Marcus, Aug 20 2021
-
from sympy import divisors
def a(n): return sum(divisors(2*n-1)[:-1])
print([a(n) for n in range(1, 79)]) # Michael S. Branicky, Aug 20 2021
Comments