cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A225147 a(n) = Im((1-I)^(1-n)*A_{n, 3}(I)) where A_{n, k}(x) are the generalized Eulerian polynomials.

Original entry on oeis.org

-1, 2, 5, -46, -205, 3362, 22265, -515086, -4544185, 135274562, 1491632525, -54276473326, -718181418565, 30884386347362, 476768795646785, -23657073914466766, -417370516232719345, 23471059057478981762, 465849831125196593045, -29279357851856595135406
Offset: 0

Views

Author

Peter Luschny, Apr 30 2013

Keywords

Crossrefs

Cf. A000810 (real part (up to sign)), A212435 (k=2), A122045 (k=1), A002439.
Bisections are A002438 and A000191.

Programs

  • Maple
    B := proc(n, u, k) option remember;
    if n = 1 then if (u < 0) or (u >= 1) then 0 else 1 fi
    else k*u*B(n-1, u, k) + k*(n-u)*B(n-1, u-1, k) fi end:
    EulerianPolynomial := proc(n, k, x) local m; if x = 0 then RETURN(1) fi;
    add(B(n+1, m+1/k, k)*u^m, m = 0..n); subs(u=x, %) end:
    seq(Im((1-I)^(1-n)*EulerianPolynomial(n, 3, I)), n=0..19);
  • Mathematica
    CoefficientList[Series[-E^(-2*x)*Sech[3*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 29 2014 after Sergei N. Gladkovskii *)
    Table[-6^n EulerE[n,1/6], {n,0,19}] (* Peter Luschny, Nov 16 2016 after Peter Bala *)
  • Sage
    from mpmath import mp, polylog, im
    mp.dps = 32; mp.pretty = True
    def A225147(n): return im(-2*I*(1+add(binomial(n,j)*polylog(-j,I)*3^j for j in (0..n))))
    [int(A225147(n)) for n in (0..19)]

Formula

a(n) = Im(-2*i*(1+Sum_{j=0..n}(binomial(n,j)*Li{-j}(i)*3^j))).
For a recurrence see the Maple program.
G.f.: conjecture -T(0)/(1+2*x), where T(k) = 1 - 9*x^2*(k+1)^2/(9*x^2*(k+1)^2 + (1+2*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = -(-3)^n*skp(n, 2/3), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
G.f.: A225147 = -1/T(0), where T(k) = 1 + 2*x + (k+1)^2*(3*x)^2/ T(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 29 2014
E.g.f.: -exp(-2*x)*sech(3*x). - Sergei N. Gladkovskii, Sep 29 2014
a(n) ~ n! * (sqrt(3)*sin(Pi*n/2) - cos(Pi*n/2)) * 2^(n+1) * 3^n / Pi^(n+1). - Vaclav Kotesovec, Sep 29 2014
From Peter Bala, Nov 13 2016: (Start)
a(n) = - 6^n*E(n,1/6), where E(n,x) denotes the Euler polynomial of order n.
a(2*n) = (-1)^(n+1)*A002438(n); a(2*n+1) = (1/2)*(-1)^n*A002439(n). (End)

A240559 a(n) = -2^n*(E(n, 1/2) + E(n, 1) + (n mod 2)*2*(E(n+1, 1/2) + E(n+1, 1))), where E(n, x) are the Euler polynomials.

Original entry on oeis.org

0, 0, 1, -3, -5, 45, 61, -1113, -1385, 42585, 50521, -2348973, -2702765, 176992725, 199360981, -17487754833, -19391512145, 2195014332465, 2404879675441, -341282303124693, -370371188237525, 64397376340013805, 69348874393137901, -14499110277050234553
Offset: 0

Views

Author

Peter Luschny, Apr 17 2014

Keywords

Examples

			G.f. = x^2 - 3*x^3 - 5*x^4 + 45*x^5 + 61*x^6 - 1113*x^7 - 1385*x^8 + ...
		

Crossrefs

Programs

  • Maple
    A240559 := proc(n) euler(n,1/2) + euler(n,1); if n mod 2 = 1 then % + 2*(euler(n+1,1/2)+euler(n+1,1)) fi; -2^n*% end: seq(A240559(n),n=0..19);
  • Mathematica
    skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; skp[n_, x0_?NumericQ] := skp[n, x] /. x -> x0; a[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(skp[k, 0] + skp[k+1, -1]), {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 09 2014, after Peter Luschny *)
  • Sage
    # Efficient computation with L. Seidel's boustrophedon transformation.
    def A240559_list(n) :
        A = [0]*(n+1); A[0] = 1; R = [0]
        k = 0; e = 1; x = -1; s = -1
        for i in (0..n):
            Am = 0; A[k + e] = 0; e = -e;
            for j in (0..i): Am += A[k]; A[k] = Am; k += e
            if e == 1: x += 1; s = -s
            v = -A[-x] if e == 1 else A[-x] - A[x]
            if i > 1: R.append(s*v)
        return R
    A240559_list(24)

Formula

a(2*n) = (-1)^(n+1)*A147315(2*n,1) = (-1)^(n+1)*A186370(2*n,2*n) =(-1)^(n+1)*A000364(n) for n>0.
a(2*n+1) = (-1)^n*A147315(2*n+1,2) = (-1)^n*A186370(2*n,2*n-1) = A241242(n).
a(n) = Sum_{k=0..n} (-1)^(n-k)*2^k*binomial(n,k)*(E(k,1/2) + 2*E(k+1,0)) where E(n,x) are the Euler polynomials.
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(skp(k,0) + skp(k+1,-1)), where skp(n, x) are the Swiss-Knife polynomials A153641.
a(n) = A239322(n) + A239005(n+1) - A239005(n). - Paul Curtz, Apr 18 2014
E.g.f.: 1 - sech(x) - tanh(x) + sinh(x)*sech(x)^2 = ((exp(-x)-1)*sech(x))^2 / 2. - Sergei N. Gladkovskii, Nov 20 2014
E.g.f.: (1 - sech(x)) * (1 - tanh(x)). - Michael Somos, Nov 22 2014

A363393 Triangle read by rows. T(n, k) = [x^k] (2 - Sum_{k=0..n} binomial(n, k)*Euler(k, 1)*(-2*x)^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 0, -2, 1, 4, 0, -8, 0, 1, 5, 0, -20, 0, 16, 1, 6, 0, -40, 0, 96, 0, 1, 7, 0, -70, 0, 336, 0, -272, 1, 8, 0, -112, 0, 896, 0, -2176, 0, 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936, 1, 10, 0, -240, 0, 4032, 0, -32640, 0, 79360, 0
Offset: 0

Views

Author

Peter Luschny, Jun 04 2023

Keywords

Comments

The Swiss-Knife polynomials (A081658 and A153641) generate the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers).

Examples

			The triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 0;
[3] 1, 3, 0,   -2;
[4] 1, 4, 0,   -8, 0;
[5] 1, 5, 0,  -20, 0,   16;
[6] 1, 6, 0,  -40, 0,   96, 0;
[7] 1, 7, 0,  -70, 0,  336, 0,  -272;
[8] 1, 8, 0, -112, 0,  896, 0, -2176, 0;
[9] 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936;
		

Crossrefs

Cf. A122045 (alternating row sums), A119880 (row sums), A214447 (central column), A155585 (main diagonal), A109573 (subdiagonal), A162660 (variant), A000364.

Programs

  • Maple
    P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1) / (n + 1):  T := (n, k) -> coeff(P(n), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Second program, based on the generating functions of the columns:
    ogf := n -> -(-2)^n * euler(n, 1) / (x - 1)^(n + 1):
    ser := n -> series(ogf(n), x, 16):
    T := (n, k) -> coeff(ser(k), x, n - k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Alternative, based on the bivariate generating function:
    egf :=  exp(x*y) * (1 + tanh(y)): ord := 20:
    sery := series(egf, y, ord): polx := n -> coeff(sery, y, n):
    coefx := n -> seq(n! * coeff(polx(n), x, n - k), k = 0..n):
    for n from 0 to 9 do coefx(n) od;
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k % 2 == 0:  return 0
        if k == n: return 1 - sum(T(n, j) for j in range(1, n, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10): print([T(n, k) for k in range(n + 1)])
  • SageMath
    def B(n: int):
        return bernoulli_polynomial(1, n)
    def P(n: int):
        return sum(binomial(n + 1, j) * B(j) * (4^j - 2^j) * x^(j - 1)
               for j in range(n + 2)) / (n + 1)
    for n in range(10): print(P(n).list())
    

Formula

For a recursion see the Python program.
T(n, k) = [x^k] P(n, x) where P(n, x) = (1 / (n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j) * x^(j - 1).
Integral_{x=-n..n} P(n, x)/2 dx = n.
T(n, k) = [x^(n - k)] -(-2)^k * Euler(k, 1) / (x - 1)^(k + 1).
T(n, k) = n! * [x^(n - k)][y^n] exp(x*y) * (1 + tanh(y)).

Extensions

Simpler name by Peter Luschny, Nov 17 2024

A151751 Triangle of coefficients of generalized Bernoulli polynomials associated with a Dirichlet character modulus 8.

Original entry on oeis.org

2, 0, 6, -44, 0, 12, 0, -220, 0, 20, 2166, 0, -660, 0, 30, 0, 15162, 0, -1540, 0, 42, -196888, 0, 60648, 0, -3080, 0, 56, 0, -1771992, 0, 181944, 0, -5544, 0, 72, 28730410, 0, -8859960, 0, 454860, 0, -9240, 0, 90
Offset: 2

Views

Author

Peter Bala, Jun 17 2009

Keywords

Comments

Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)-1) * sum {r = 0..m-1} X(r)*exp(r*t)
= sum {n = 0..inf} B_n(X,x)*t^n/n!.
For the theory and properties of these polynomials see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = -1; X(2*n) = 0.
Cf. A153641.

Examples

			The triangle begins
n\k|........0.......1........2.......3......4.......5.......6
=============================================================
.2.|........2
.3.|........0.......6
.4.|......-44.......0.......12
.5.|........0....-220........0......20
.6.|.....2166.......0.....-660.......0......30
.7.|........0...15162........0...-1540.......0.....42
.8.|..-196888.......0....60648.......0...-3080......0......56
...
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.

Crossrefs

Programs

  • Maple
    with(gfun):
    for n from 2 to 10 do
    Genbernoulli(n,x) := 8^(n-1)*(bernoulli(n,(x+1)/8)-bernoulli(n,(x+3)/8)-bernoulli(n,(x+5)/8)+bernoulli(n,(x+7)/8));
    seriestolist(series(Genbernoulli(n,x),x,10))
    end do;

Formula

TABLE ENTRIES
(1)... T(2*n,2*k+1) = 0, T(2*n+1,2*k) = 0;
(2)... T(2*n,2*k) = (-1)^(n-k-1)*C(2*n,2*k)*2*(n-k)*A000464(n-k-1);
(3)... T(2*n+1,2*k+1) = (-1)^(n-k-1)*C(2*n+1,2*k+1)*2*(n-k)*A000464(n-k-1);
where C(n,k) = binomial(n,k).
GENERATING FUNCTION
The e.g.f. for these generalized Bernoulli polynomials is
(4)... t*exp(x*t)*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1)
= sum {n = 2..inf} B_n(X,x)*t^n/n! = 2*t^2/2! + 6*x*t^3/3! + (12*x^2 - 44)*t^4/4! + ....
In terms of the ordinary Bernoulli polynomials B_n(x)
(5)... B_n(X,x) = 8^(n-1)*{B_n((x+1)/8) - B_n((x+3)/8) - B_n((x+5)/8) + B_n((x+7)/8)}.
The B_n(X,x) are Appell polynomials of the form
(6)... B_n(X,x) = sum {j = 0..n} binomial(n,j)*B_j(X,0)*x*(n-j).
The sequence of generalized Bernoulli numbers
(7)... [B_n(X,0)]n>=2 = [2,0,-44,0,2166,0,...]
has the e.g.f.
(8)... t*(exp(t)-exp(3*t)-exp(5*t)+exp(7*t))/(exp(8*t)-1),
which simplifies to
(9)... t*sinh(t)/cosh(2*t).
Hence
(10)... B_(2*n)(X,0) = (-1)^(n+1)*2*n*A000464(n-1); B_(2*n+1)(X,0) = 0.
The sequence {B_(2*n)(X,0)}n>=2 is A161722.
RELATION WITH TWISTED SUMS OF POWERS
The generalized Bernoulli polynomials may be used to evaluate sums of k-th powers twisted by the function X(n). For the present case the result is
(11)... sum{n = 0..8*N-1} X(n)*n^k = 1^k-3^k-5^k+7^k- ... +(8*N-1)^k
= [B_(k+1)(X,8*N) - B_(k+1)(X,0)]/(k+1)
For the proof, apply [Cohen, Corollary 9.4.17 with m = 8 and x = 0].
MISCELLANEOUS
(12)... Row sums [2, 6, -32, ...] = (-1)^(1+binomial(n,2))*A109572(n)
= (-1)^(1+binomial(n,2))*n*A000828(n-1) = (-1)^(1+binomial(n,2))*n* 2^(n-2)*A000111(n-1).

A156201 Numerator of Euler(n, 1/8).

Original entry on oeis.org

1, -3, -7, 117, 497, -15123, -95767, 4116837, 34741217, -1921996323, -20273087527, 1370953667157, 17352768515537, -1386843017916723, -20479521468959287, 1888542637550347077, 31872138933891307457, -3331009898404800736323, -63243057486503656319047
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For denominators see A001018. Cf. A000813.

Programs

  • Maple
    p := proc(n) local j; 2*I*(1+add(binomial(n,j)*polylog(-j,I)*4^j, j=0..n)) end:  A156201 := n -> Im(p(n));
    seq(A156201(i), i=0..10);  # Peter Luschny, Apr 29 2013
  • Mathematica
    Table[EulerE[n, 1/8] // Numerator, {n, 0, 18}] (* Jean-François Alcover, Apr 30 2013 *)

Formula

a(n) = Im(2*i*(1+Sum_{j=0..n} (binomial(n,j)*Li_{-j}(i)*4^j))). - Peter Luschny, Apr 29 2013
G.f.: conjecture T(0)/(1+3*x), where T(k) = 1 - 16*x^2*(k+1)^2/(16*x^2*(k+1)^2 + (1+3*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = (-4)^n*skp(n, 3/4), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
a(n) = 2^(4*n+1)*(zeta(-n,1/16)-zeta(-n, 9/16)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
From Emanuele Munarini, Aug 22 2022: (Start)
E.g.f.: (2*e^t)/(e^(8*t)+1).
E.g.f. for the sequence of the absolute values: (cos(3*t)+sin(3*t))/cos(4*t).
|a(2*n)| = Sum_{k=0..n} binomial(2*n,2*k) (-1)^k 4^(2*n-2*k) 3^(2*k) |E(2*n-2k)|
|a(2*n+1)| = Sum_{k=0..n} binomial(2*n+1,2*k+1) (-1)^k 4^(2*n-2*k) 3^(2*k+1) |E(2*n-2*k)|
where the E(n)'s are the Euler numbers (A122045).
(End)

A214445 a(n) = Euler(2*n)*binomial(4*n,2*n).

Original entry on oeis.org

1, -6, 350, -56364, 17824950, -9334057876, 7308698191340, -7997684730384600, 11655857682806336550, -21824608434847162167300, 51054382673481634917970500, -145916894745749901373155951720, 500306549034304293474784779805500, -2026855002861172152744641068895033544
Offset: 0

Views

Author

Peter Luschny, Jul 18 2012

Keywords

Comments

Central column of the nonzero coefficients of the Swiss-Knife polynomials, a(n) = A153641(4*n, 2*n).

Crossrefs

Programs

  • Sage
    def A214445(n) : return binomial(4*n,2*n)*euler_number(2*n)

Formula

a(n) = (-1)^n * A086646(2n,n). - Alois P. Heinz, Apr 27 2023

A214447 a(n) = (-2)^n * Euler_polynomial(n,1) * binomial(2*n,n).

Original entry on oeis.org

1, -2, 0, 40, 0, -4032, 0, 933504, 0, -385848320, 0, 249576198144, 0, -232643283353600, 0, 295306112919306240, 0, -489743069731226910720, 0, 1028154317960939805081600, 0, -2665182817368374114506506240, 0, 8360422228704533182913131315200
Offset: 0

Views

Author

Peter Luschny, Jul 18 2012

Keywords

Comments

Central column of the Euler tangent triangle, a(n) = A081733(2*n,n).
Also a(n) = -A162660(2*n,n) for n > 0. - Peter Luschny, Jul 23 2012

Crossrefs

Programs

  • Maple
    A214447 := n -> binomial(2*n,n)*(-2)^n*euler(n,1):
    seq(A214447(n), n=0..23);
  • Sage
    from mpmath import mp, fac2
    mp.dps = 32
    def A214447(n) : return (n+1)*2^n*fac2(2*n-1)*add(add((-1)^(k-j)*(k-j)^n / (factorial(j)*factorial(n-j+1)) for j in (0..k)) for k in (1..n))
    print([int(A214447(n)) for n in (0..19)]) # Peter Luschny, Jul 23 2012

Formula

a(n) = [x^n] (skp(2*n,x+1)-skp(2*n,x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = (n+1)*2^n*(2*n-1)!!*Sum_{k=1..n} Sum_{j=0..k} (-1)^(k-j)*(k-j)^n/(j!*(n-j+1)!) for n > 0. - Peter Luschny, Jul 23 2012

A241209 a(n) = E(n) - E(n+1), where E(n) are the Euler numbers A122045(n).

Original entry on oeis.org

1, 1, -1, -5, 5, 61, -61, -1385, 1385, 50521, -50521, -2702765, 2702765, 199360981, -199360981, -19391512145, 19391512145, 2404879675441, -2404879675441, -370371188237525, 370371188237525, 69348874393137901, -69348874393137901, -15514534163557086905
Offset: 0

Views

Author

Paul Curtz, Apr 17 2014

Keywords

Comments

A version of the Seidel triangle (1877) for the integer Euler numbers is
1
1 1
2 2 1
2 4 5 5
16 16 14 10 5
16 32 46 56 61 61
etc.
It is not in the OEIS. See A008282.
The first diagonal, Es(n) = 1, 1, 1, 5, 5, 61, 61, 1385, 1385, ..., comes from essentially A000364(n) repeated.
a(n) is Es(n) signed two by two.
Difference table of a(n):
1, 1, -1, -5, 5, 61, -61, -1385, ...
0, -2, -4, 10, 56, -122, -1324, ...
-2, -2, 14, 46, -178, -1202, ...
0, 16, 32, -224, -1024, ...
16, 16, -256, -800, ...
0, -272, -544, ...
-272, -272, ...
0, ...
etc.
Sum of the antidiagonals: 1, 1, -5, -11, 61, 211, -385, ... = A239322(n+1).
Main diagonal interleaved with the first upper diagonal: 1, 1, -2, -4, 14, 46, ... = signed A214267(n+1).
Inverse binomial transform (first column): A155585(n+1).
The Akiyama-Tanigawa transform applied to A046978(n+1)/A016116(n) gives
1, 1, 1/2, 0, -1/4, -1/4, -1/8, 0, ...
0, 1, 3/2, 1, 0, -3/4, -7/8, ...
-1, -1, 3/2, 4, 15/4, 3/4, ...
0, -5, -15/2, 1, 15, ...
5, 5, -51/2, -56, ...
0, 61, 183/2, ...
-61, -61, ...
0, ...
etc.
A122045(n) and A239005(n) are reciprocal sequences by their inverse binomial transform. In their respective difference table, two different signed versions of A214247(n) appear: 1) interleaved main diagonal and first under diagonal (1, -1, -1, 2, 4, -14, ...) and 2) interleaved main diagonal and first upper diagonal (1, 1, -1, -2, 4, 14, ...).

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    Euler:= func< n | 2^n*EulerPoly(n, 1/2) >; // A122045
    [Euler(n) - Euler(n+1): n in [0..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    A241209 := proc(n) local v, k, h, m; m := `if`(n mod 2 = 0, n, n+1);
    h := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k,4));
    (-1)^n*add(2^iquo(-k,2)*h(k+1)*add((-1)^v*binomial(k,v)*(v+1)^m, v=0..k)
    ,k=0..m) end: seq(A241209(n),n=0..24); # Peter Luschny, Apr 17 2014
  • Mathematica
    skp[n_, x_]:= Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}];
    a[n_]:= skp[n, x] - skp[n+1, x]/. x->0; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 17 2014, after Peter Luschny *)
    Table[EulerE[n] - EulerE[n+1], {n,0,30}] (* Vincenzo Librandi, Jan 24 2016 *)
    -Differences/@Partition[EulerE[Range[0,30]],2,1]//Flatten (* Harvey P. Dale, Apr 16 2019 *)
  • SageMath
    [euler_number(n) - euler_number(n+1) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

a(n) = A119880(n+1) - A119880(n).
a(n) is the second column of the fractional array.
a(n) = (-1)^n*second column of the array in A239005(n).
a(n) = skp(n, 0) - skp(n+1, 0), where skp(n, x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 17 2014
E.g.f.: exp(x)/cosh(x)^2. - Sergei N. Gladkovskii, Jan 23 2016
G.f. T(0)/x-1/x, where T(k) = 1 - x*(k+1)/(x*(k+1)-(1-x)/(1-x*(k+1)/(x*(k+1)+(1-x)/T(k+1)))). - Sergei N. Gladkovskii, Jan 23 2016

A241242 a(n) = -2^(2*n+1)*(E(2*n+1, 1/2) + E(2*n+1, 1) + 2*(E(2*n+2, 1/2) + E(2*n+2, 1))), where E(n,x) are the Euler polynomials.

Original entry on oeis.org

0, -3, 45, -1113, 42585, -2348973, 176992725, -17487754833, 2195014332465, -341282303124693, 64397376340013805, -14499110277050234553, 3840151029102915908745, -1182008039799685905580413, 418424709061213506712209285, -168805428822414120140493978273
Offset: 0

Views

Author

Peter Luschny, Apr 17 2014

Keywords

Crossrefs

Programs

  • Maple
    A241242 := proc(n) e := n -> euler(n,1/2) + euler(n,1); -2^(2*n+1)*(e(2*n+1) + 2*e(2*n+2)) end: seq(A241242(n),n=0..15);
  • Mathematica
    Array[-2^(2 # + 1)*(EulerE[2 # + 1, 1/2] + EulerE[2 # + 1, 1] + 2 (EulerE[2 # + 2, 1/2] + EulerE[2 # + 2, 1])) &, 16, 0] (* Michael De Vlieger, May 24 2018 *)

Formula

a(n) = A240559(2*n+1) = (-1)^n*A147315(2*n+1,2) = (-1)^n*A186370(2*n,2*n-1).
a(n) = Sum_{k=0..2*n+1} (-1)^(2*n+1-k)*binomial(2*n+1, k)*2^k*(E(k, 1/2) + 2*E(k+1, 0)) where E(n,x) are the Euler polynomials.
a(n) = Sum_{k=0..2*n+1} (-1)^(2*n+1-k)*binomial(2*n+1, k)*(skp(k, 0) + skp(k+1, -1)), where skp(n, x) are the Swiss-Knife polynomials A153641.
a(n) = Bernoulli(2*n + 2) * 4^(n+1) * (1 - 4^(n+1)) / (2*n + 2) - EulerE(2*n + 2), where EulerE(2*n) is A028296. - Daniel Suteu, May 22 2018
a(n) = (-1)^(n+1) * (A000182(n+1) - A000364(n+1)). - Daniel Suteu, Jun 23 2018

A156205 Numerator of Euler(n, 3/8).

Original entry on oeis.org

1, -1, -15, 47, 1185, -6241, -230895, 1704527, 83860545, -796079041, -48942778575, 567864586607, 41893214676705, -574448847467041, -49441928730798255, 782259922208550287, 76946148390480577665, -1379749466246228538241, -152682246738275154625935
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For denominators see A001018. Cf. A000813.

Programs

  • Maple
    p := proc(n) local j; 2*I*(1+add(binomial(n,j)*polylog(-j,I)*4^j, j=0..n)) end:  A156205 := n -> (-1)^(n+1)*Re(p(n));
    seq(A156205(i),i=0..11);  # Peter Luschny, Apr 29 2013
  • Mathematica
    Numerator[EulerE[Range[0,20],3/8]] (* Vincenzo Librandi, May 04 2012 *)

Formula

a(n) = (-1)^(n+1)*Re(2*I*(1+sum_{j=0..n}(binomial(n,j)*Li_{-j}(I)*4^j))). - Peter Luschny, Apr 29 2013
a(n) = (-4)^n*skp(n, 1/4), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
Previous Showing 31-40 of 52 results. Next