cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 2314 results. Next

A164779 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829645, 430466400, 3874194000, 34867713600, 313809130800, 2824279552800, 25418492355600, 228766218624000, 2058894054430380, 18530029271219040, 166770108473225760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    coxG[{8,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 13 2017 *)
    CoefficientList[Series[(1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9), {x,0,20}], x] (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 36*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
G.f.: (1+x)*(1-x^8)/(1 -9*x +44*x^8 -36*x^9). - G. C. Greubel, Apr 26 2019

A165699 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063133730, 27815482777840560, 1223881242223068990, 53850774657730746960, 2369434084936444167840, 104255099737040360655360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170764, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10), {x, 0, 20}], x] (* or *) coxG[{9, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
G.f.: (1+x)*(1-x^9)/(1 -44*x +989*x^9 -946*x^10). - G. C. Greubel, Apr 26 2019

A166377 Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734834, 9659108817072, 115909305793710, 1390911669390672, 16690940031081888, 200291280353708544
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170732, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-12*t+77*t^11-66*t^12), {t, 0, 20}], t] (* G. C. Greubel, May 10 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(66*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
G.f.: (1 + t - t^11 - t^12)/(1 - 12*t + 77*t^11 - 66*t^12). - Zak Seidov, Dec 05 2009

A154635 Ratio of the sum of the bends of the 5-dimensional spheres added in the n-th generation of Apollonian packing to the sum of the bends of the initial configuration of seven mutually tangent spheres.

Original entry on oeis.org

1, 2, 15, 108, 774, 5544, 39708, 284400, 2036952, 14589216, 104492016, 748400832, 5360254560, 38391631488, 274971524544, 1969422407424, 14105550112128, 101027866452480, 723589630947072, 5182549848861696, 37118861005211136, 265855588948518912
Offset: 0

Views

Author

Colin Mallows, Jan 13 2009

Keywords

Examples

			Starting with seven 5-dimensional spheres with bends 0,0,1,1,1,1,1 summing to 5, the first derived generation has seven spheres, with bends 1,1,1,1,1,5/2,5/2 summing to 10. So a(1) = 10/5 = 2.
		

Crossrefs

Cf. A135849 for dim=2. A137146 for the sum of squares of bends when dim=2. A154636 and A154637 for starting with three spheres in 2 dimensions. A154638-A154645 for results in the three-dimensional case.

Programs

Formula

G.f. (1-x)*(1-5*x) / (1-8*x+6*x^2).
From Colin Barker, Nov 16 2016: (Start)
a(n) = (((4-sqrt(10))^n*(-8+sqrt(10))+(4+sqrt(10))^n*(8+sqrt(10))))/(12*sqrt(10)) for n>0.
a(n) = 8*a(n-1) - 6*a(n-2) for n>2.
(End)

A154641 a(n) is the ratio of the sum of the bends of the spheres that are added in the n-th generation of Apollonian packing of three-dimensional spheres, using "strategy (a)" to count them (see the reference), to the sum of the bends of the initial five mutually tangent spheres.

Original entry on oeis.org

1, 3, 20, 108, 630, 3570, 20460
Offset: 0

Views

Author

Colin Mallows, Jan 13 2009

Keywords

Comments

In strategy (a) we do not count spheres that can be obtained (by reflection) from the "extra" quintuples of spheres that appear in the previous generation.

Examples

			Starting with five spheres with bends 0,0,1,1,1, the first derived generation has 5 spheres with bends 1,1,1,3,3, so a(2) = 9/3 = 3.
		

Crossrefs

For other sequences relating to the 3-dimensional case, see A154638-A154645.

A154644 a(n) is the ratio of the sum of the bends of the spheres that are added in the n-th generation of Apollonian packing of three-dimensional spheres, using "strategy (b)" to count them (see the reference), to the sum of the bends of the initial five mutually tangent spheres.

Original entry on oeis.org

1, 3, 20, 174, 1170, 8454
Offset: 0

Views

Author

Colin Mallows, Jan 13 2009

Keywords

Comments

In strategy (b) we count all spheres that can be generated (by reflection) from all quintuples that appeared in the previous generation.

Examples

			Starting with five spheres with bends 0,0,1,1,1, the first derived generation has 5 spheres with bends 1,1,1,3,3, so a(2) = 9/3 = 3.
		

Crossrefs

For other sequences relating to the 3-dimensional case, see A154638-A154645.

A161410 Number of reduced words of length n in the infinite affine Weyl group (E_6)^{~} on 7 generators.

Original entry on oeis.org

1, 7, 27, 77, 183, 385, 740, 1325, 2242, 3623, 5633, 8474, 12391, 17676, 24670, 33768, 45426, 60164, 78568, 101296, 129083, 162742, 203168, 251346, 308355, 375369, 453663, 544620, 649732, 770602, 908952, 1066628, 1245600, 1447967, 1675965, 1931969, 2218494
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 29 2009

Keywords

Examples

			Coxeter matrix:
. [1 2 3 2 2 2 2]
. [2 1 2 3 2 2 3]
. [3 2 1 3 2 2 2]
. [2 3 3 1 3 2 2]
. [2 2 2 3 1 3 2]
. [2 2 2 2 3 1 2]
. [2 3 2 2 2 2 1]
		

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche V.)

Crossrefs

Programs

  • Magma
    Z := Integers();
    C := SymmetricMatrix(
    [1,
    2,1,
    3,2,1,
    2,3,3,1,
    2,2,2,3,1,
    2,2,2,2,3,1,
    2,3,2,2,2,2,1]);
    G := CoxeterGroup(GrpFPCox, C);
    f := GrowthFunction(G);
    T := PowerSeriesRing(Z, 50);
    Eltseq(T!f);
    // Corrected by Klaus Brockhaus, Feb 12 2010
  • Mathematica
    CoefficientList[Series[(x^22 + 3 x^21 + 5 x^20 + 7 x^19 + 10 x^18 + 14 x^17 + 17 x^16 + 19 x^15 + 22 x^14 + 25 x^13 + 26 x^12 + 26 x^11 + 26 x^10 + 25 x^9 + 22 x^8 + 19 x^7 + 17 x^6 + 14 x^5 + 10 x^4 + 7 x^3 + 5 x^2 + 3 x + 1) / (x^22 - 4 x^21 + 6 x^20 - 4 x^19 + x^18 - x^15 + 4 x^14 - 6 x^13 + 4 x^12 - 2 x^11 + 4 x^10 - 6 x^9 + 4 x^8 - x^7 + x^4 - 4 x^3 + 6 x^2 - 4 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)

Formula

G.f.: (x^22 + 3*x^21 + 5*x^20 + 7*x^19 + 10*x^18 + 14*x^17 + 17*x^16 + 19*x^15 + 22*x^14 + 25*x^13 + 26*x^12 + 26*x^11 + 26*x^10 + 25*x^9 + 22*x^8 + 19*x^7 + 17*x^6 + 14*x^5 + 10*x^4 + 7*x^3 + 5*x^2 + 3*x + 1)/(x^22 - 4*x^21 + 6*x^20 - 4*x^19 + x^18 - x^15 + 4*x^14 - 6*x^13 + 4*x^12 - 2*x^11 + 4*x^10 - 6*x^9 + 4*x^8 - x^7 + x^4 - 4*x^3 + 6*x^2 - 4*x + 1)

A162740 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 4, 12, 30, 72, 168, 390, 900, 2076, 4782, 11016, 25368, 58422, 134532, 309804, 713406, 1642824, 3783048, 8711526, 20060676, 46195260, 106377294, 244963080, 564094968, 1298984214, 2991269124, 6888221772, 15862029150, 36526694472, 84112781928, 193692865350
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
From Bruno Berselli, Dec 28 2015: (Start)
Also, expansion of b(2)*b(3)/(1 - 2*x - 2*x^2 + 3*x^3), where b(k) = (1-x^k)/(1-x).
This is also the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_22 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
(End)

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(3)/(1-2*x-2*x^2+3*x^3))); // Bruno Berselli, Dec 28 2015 - see Chapovalov et al.
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(x^3+2x^2+2x+1)/(3x^3-2x^2-2x+1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{3, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (x^3 + 2*x^2 + 2*x + 1)/(3*x^3 - 2*x^2 - 2*x + 1).
From Bruno Berselli, Dec 28 2015: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) for n>3.
a(n) = -2 + ((-7+2*sqrt(13))*(1-sqrt(13))^n + (7+2*sqrt(13))*(1+sqrt(13))^n)/(3*sqrt(13)*2^(n-1)) for n>0. (End)
G.f.: (1+x)*(1-x^3)/(1 -3*x +5*x^3 -3*x^4). - G. C. Greubel, Apr 25 2019

A162783 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 14, 182, 2275, 28392, 353808, 4408950, 54938520, 684572616, 8530235532, 106292493216, 1324476080928, 16503864518232, 205649272719072, 2562528512535264, 31930831990629936, 397879682765894784
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[14, 182, 2275];; for n in [4..20] do a[n]:=12*a[n-1]+12*a[n-2] - 78*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4), {x,0,20}],x] (* or *) coxG[{3, 78, -12}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(78*t^3 - 12*t^2 - 12*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 13*x + 90*x^3 - 78*x^4). - G. C. Greubel, Apr 26 2019

A162785 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 15, 210, 2835, 38220, 514605, 6928740, 93285465, 1255955610, 16909618635, 227663487870, 3065158424055, 41267909559240, 555612506386665, 7480515990707760, 100714290692336685, 1355971748798391270
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[15, 210, 2835];; for n in [4..20] do a[n]:=13*a[n-1]+13*a[n-2] -91*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4), {x, 0, 20}], x] (* or *) coxG[{3, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(91*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 14*x + 104*x^3 - 91*x^4). - G. C. Greubel, Apr 26 2019
Previous Showing 41-50 of 2314 results. Next