A164779
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829645, 430466400, 3874194000, 34867713600, 313809130800, 2824279552800, 25418492355600, 228766218624000, 2058894054430380, 18530029271219040, 166770108473225760
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, 8, 8, 8, 8, 8, 8, -36).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9) )); // G. C. Greubel, Apr 26 2019
-
coxG[{8,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 13 2017 *)
CoefficientList[Series[(1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9), {x,0,20}], x] (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A165699
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
Original entry on oeis.org
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063133730, 27815482777840560, 1223881242223068990, 53850774657730746960, 2369434084936444167840, 104255099737040360655360
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..600
- Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, 43, 43, 43, -946).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10), {x, 0, 20}], x] (* or *) coxG[{9, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^9)/(1-44*x+989*x^9-946*x^10)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A166377
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734834, 9659108817072, 115909305793710, 1390911669390672, 16690940031081888, 200291280353708544
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, -66).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-12*t+77*t^11-66*t^12), {t, 0, 20}], t] (* G. C. Greubel, May 10 2016 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^11)/(1-12*x+77*x^11-66*x^12)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A154635
Ratio of the sum of the bends of the 5-dimensional spheres added in the n-th generation of Apollonian packing to the sum of the bends of the initial configuration of seven mutually tangent spheres.
Original entry on oeis.org
1, 2, 15, 108, 774, 5544, 39708, 284400, 2036952, 14589216, 104492016, 748400832, 5360254560, 38391631488, 274971524544, 1969422407424, 14105550112128, 101027866452480, 723589630947072, 5182549848861696, 37118861005211136, 265855588948518912
Offset: 0
Starting with seven 5-dimensional spheres with bends 0,0,1,1,1,1,1 summing to 5, the first derived generation has seven spheres, with bends 1,1,1,1,1,5/2,5/2 summing to 10. So a(1) = 10/5 = 2.
A154641
a(n) is the ratio of the sum of the bends of the spheres that are added in the n-th generation of Apollonian packing of three-dimensional spheres, using "strategy (a)" to count them (see the reference), to the sum of the bends of the initial five mutually tangent spheres.
Original entry on oeis.org
1, 3, 20, 108, 630, 3570, 20460
Offset: 0
Starting with five spheres with bends 0,0,1,1,1, the first derived generation has 5 spheres with bends 1,1,1,3,3, so a(2) = 9/3 = 3.
For other sequences relating to the 3-dimensional case, see
A154638-
A154645.
A154644
a(n) is the ratio of the sum of the bends of the spheres that are added in the n-th generation of Apollonian packing of three-dimensional spheres, using "strategy (b)" to count them (see the reference), to the sum of the bends of the initial five mutually tangent spheres.
Original entry on oeis.org
1, 3, 20, 174, 1170, 8454
Offset: 0
Starting with five spheres with bends 0,0,1,1,1, the first derived generation has 5 spheres with bends 1,1,1,3,3, so a(2) = 9/3 = 3.
For other sequences relating to the 3-dimensional case, see
A154638-
A154645.
A161410
Number of reduced words of length n in the infinite affine Weyl group (E_6)^{~} on 7 generators.
Original entry on oeis.org
1, 7, 27, 77, 183, 385, 740, 1325, 2242, 3623, 5633, 8474, 12391, 17676, 24670, 33768, 45426, 60164, 78568, 101296, 129083, 162742, 203168, 251346, 308355, 375369, 453663, 544620, 649732, 770602, 908952, 1066628, 1245600, 1447967, 1675965, 1931969, 2218494
Offset: 0
Coxeter matrix:
. [1 2 3 2 2 2 2]
. [2 1 2 3 2 2 3]
. [3 2 1 3 2 2 2]
. [2 3 3 1 3 2 2]
. [2 2 2 3 1 3 2]
. [2 2 2 2 3 1 2]
. [2 3 2 2 2 2 1]
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche V.)
-
Z := Integers();
C := SymmetricMatrix(
[1,
2,1,
3,2,1,
2,3,3,1,
2,2,2,3,1,
2,2,2,2,3,1,
2,3,2,2,2,2,1]);
G := CoxeterGroup(GrpFPCox, C);
f := GrowthFunction(G);
T := PowerSeriesRing(Z, 50);
Eltseq(T!f);
// Corrected by Klaus Brockhaus, Feb 12 2010
-
CoefficientList[Series[(x^22 + 3 x^21 + 5 x^20 + 7 x^19 + 10 x^18 + 14 x^17 + 17 x^16 + 19 x^15 + 22 x^14 + 25 x^13 + 26 x^12 + 26 x^11 + 26 x^10 + 25 x^9 + 22 x^8 + 19 x^7 + 17 x^6 + 14 x^5 + 10 x^4 + 7 x^3 + 5 x^2 + 3 x + 1) / (x^22 - 4 x^21 + 6 x^20 - 4 x^19 + x^18 - x^15 + 4 x^14 - 6 x^13 + 4 x^12 - 2 x^11 + 4 x^10 - 6 x^9 + 4 x^8 - x^7 + x^4 - 4 x^3 + 6 x^2 - 4 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
A162740
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 4, 12, 30, 72, 168, 390, 900, 2076, 4782, 11016, 25368, 58422, 134532, 309804, 713406, 1642824, 3783048, 8711526, 20060676, 46195260, 106377294, 244963080, 564094968, 1298984214, 2991269124, 6888221772, 15862029150, 36526694472, 84112781928, 193692865350
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009, page 31.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), page 186.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3).
Cf. similar sequences listed in
A265055.
-
m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(3)/(1-2*x-2*x^2+3*x^3))); // Bruno Berselli, Dec 28 2015 - see Chapovalov et al.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(x^3+2x^2+2x+1)/(3x^3-2x^2-2x+1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
coxG[{3, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^40)); Vec((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A162783
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 14, 182, 2275, 28392, 353808, 4408950, 54938520, 684572616, 8530235532, 106292493216, 1324476080928, 16503864518232, 205649272719072, 2562528512535264, 31930831990629936, 397879682765894784
Offset: 0
-
a:=[14, 182, 2275];; for n in [4..20] do a[n]:=12*a[n-1]+12*a[n-2] - 78*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4), {x,0,20}],x] (* or *) coxG[{3, 78, -12}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^3)/(1-13*x+90*x^3-78*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A162785
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 15, 210, 2835, 38220, 514605, 6928740, 93285465, 1255955610, 16909618635, 227663487870, 3065158424055, 41267909559240, 555612506386665, 7480515990707760, 100714290692336685, 1355971748798391270
Offset: 0
-
a:=[15, 210, 2835];; for n in [4..20] do a[n]:=13*a[n-1]+13*a[n-2] -91*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4), {x, 0, 20}], x] (* or *) coxG[{3, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
Comments