A156924
Fifth right hand column (n-m=4) of the A156920 triangle.
Original entry on oeis.org
1, 83, 2685, 56285, 919615, 12813843, 160206627, 1854550395, 20291056470, 212826091180, 2161547322134, 21414479565774, 208076662576370, 1991164206775450, 18825064380813450
Offset: 0
Equals
A156920 fifth right hand column.
Equals
A156919 fifth right hand column divided by 16.
Equals
A142963 fifth right hand column divided by 2^n
A142966
Fourth column (m=3) of triangle A142963 divided by 8.
Original entry on oeis.org
1, 58, 877, 8030, 56285, 335162, 1792749, 8904486, 41949645, 190129090, 837258109, 3607669966, 15289404989, 63975698570, 265065915725, 1089837752118, 4454225465325, 18119738464530, 73441531708765, 296814738679390, 1196884383319261, 4817845684107098
Offset: 0
A162007
Third left hand column of the EG1 triangle A162005.
Original entry on oeis.org
1, 270, 36096, 4766048, 704357760, 120536980224, 24060789342208, 5590122715250688, 1503080384197754880, 464520829174515630080, 163839204411117787938816, 65500849343294249018327040
Offset: 3
Third left hand column of the EG1 triangle
A162005.
-
nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=3; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A162006
Second left hand column of the EG1 triangle A162005.
Original entry on oeis.org
1, 28, 1032, 52736, 3646208, 330545664, 38188155904, 5488365862912, 961530104709120, 201865242068910080, 50052995352723193856, 14476381898608390176768, 4831399425299156001882112
Offset: 2
Second left hand column of the EG1 triangle
A162005.
-
nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=2; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A185411
A triangular decomposition of the double factorial numbers A001147.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 10, 1, 0, 8, 60, 36, 1, 0, 16, 296, 516, 116, 1, 0, 32, 1328, 5168, 3508, 358, 1, 0, 64, 5664, 42960, 64240, 21120, 1086, 1, 0, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 0, 256, 95872, 2225728, 10725184, 14713840, 6049744, 638968, 9832, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 4, 10, 1;
0, 8, 60, 36, 1;
0, 16, 296, 516, 116, 1;
0, 32, 1328, 5168, 3508, 358, 1;
0, 64, 5664, 42960, 64240, 21120, 1086, 1;
0, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1;
0, 256, 95872, 2225728, 10725184, 14713840, 6049744, 638968, 9832, 1;
...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Jose Bastidas, Christophe Hohlweg, and Franco Saliola, The Primitive Eulerian polynomial, arXiv:2306.15556 [math.CO], 2023. See Table 2 p. 18.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, arXiv: 1204.4963v3 [math.CO], 2012.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, Elect. J. Combinat. 20 (1) (2013) #P11.
- Shi-Mei Ma, T. Mansour, and D. Callan, Some combinatorial arrays related to the Lotka-Volterra system, arXiv:1404.0731 [math.CO], 2014.
- Shi-Mei Ma, T. Mansour and D. G. L. Wang, Combinatorics of Dumont differential system on the Jacobi elliptic functions, arXiv:1403.0233 [math.CO], 2014.
- Shi-Mei Ma, Toufik Mansour, David G.L. Wang, and Yeong-Nan Yeh, Several variants of the Dumont differential system and permutation statistics, Science China Mathematics 60 (2018).
- Shi-Mei Ma and Y.-N. Yeh, Stirling permutations, cycle structures of permutations and perfect matchings, arXiv:1503.06601 [math.CO], 2015.
-
u[n_, 0] := If[n==0, 1, 0]; u[n_, m_] /; m==1 := 2^(n - 1); u[n_, m_] /; m==n>=1 := 1; u[n_, m_] /; 1David Callan, Dec 13 2011 *)
Sequence terms corrected by
Paul Barry, Jan 27 2011
A142968
Fifth column (m=4) of triangle A142963 divided by 16=2^4.
Original entry on oeis.org
1, 179, 5280, 82610, 919615, 8284857, 64730022, 457217400, 2999230965, 18608607535, 110625457964, 636103699038, 3562753619915, 19541111960965, 105392471360850, 560747327119908, 2950726075955265, 15387821226034875, 79656442803398680, 409857988825489610
Offset: 0
A186695
A Galton triangle: T(n,k) = (2k-1)*(T(n-1,k) + T(n-1,k-1)): a type B analog of the ordered Bell numbers A019538.
Original entry on oeis.org
1, 1, 3, 1, 12, 15, 1, 39, 135, 105, 1, 120, 870, 1680, 945, 1, 363, 4950, 17850, 23625, 10395, 1, 1092, 26565, 159600, 373275, 374220, 135135, 1, 3279, 138285, 1303155, 4795875, 8222445, 6621615, 2027025
Offset: 1
Triangle begins
n\k.|..1.....2.....3......4......5......6
=========================================
..1.|..1
..2.|..1.....3
..3.|..1....12....15
..4.|..1....39...135....105
..5.|..1...120...870...1680....945
..6.|..1...363..4950..17850..23625..10395
..
Examples of recurrence relation
T(4,3) = 5*(T(3,3)+T(3,2)) = 5*(15+12) = 135;
T(6,4) = 7*(T(5,4)+T(5,3)) = 7*(1680+870) = 17850.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
-
A186695 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 1; else (2*k-1)*(procname(n-1, k) + procname(n-1, k-1)) ; end if; end proc: seq(seq(A186695(n,k),k = 1..n),n = 1..10);
-
T[n_, k_] := (2k-1)! Sum[(-1)^(k-j-1) (2j+1)^(n-1) Binomial[k-1, j], {j, 0, k-1}] / (2^(k-1) (k-1)!)^2;
Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)
A187075
A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).
Original entry on oeis.org
1, 2, 3, 4, 18, 15, 8, 84, 180, 105, 16, 360, 1500, 2100, 945, 32, 1488, 10800, 27300, 28350, 10395, 64, 6048, 72240, 294000, 529200, 436590, 135135, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025, 256, 97920, 2904000, 26107200, 105099120, 220041360, 249729480, 145945800, 34459425
Offset: 1
Triangle begins
n\k.|...1.....2......3......4......5......6
===========================================
..1.|...1
..2.|...2.....3
..3.|...4....18.....15
..4.|...8....84....180....105
..5.|..16...360...1500...2100....945
..6.|..32..1488..10800..27300..28350..10395
..
Examples of recurrence relation:
T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;
T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.
-
A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);
-
Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* G. C. Greubel, Jun 17 2016 *)
-
# uses[delehamdelta from A084938]
# Adds a first column (1,0,0,0, ...).
def A187075_triangle(n):
return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])
A187075_triangle(4) # Peter Luschny, Oct 20 2013
A185410
A decomposition of the double factorials A001147.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0
Offset: 0
Triangle begins:
1,
1, 0,
1, 2, 0,
1, 10, 4, 0,
1, 36, 60, 8, 0,
1, 116, 516, 296, 16, 0,
1, 358, 3508, 5168, 1328, 32, 0,
1, 1086, 21120, 64240, 42960, 5664, 64, 0,
1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0,
1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0,
...
In the Savage-Viswanathan paper, the coefficients appear as
1
1 2
1 10 4
1 36 60 8
1 116 516 296 16
1 358 3508 5168 1328 32
1 1086 21120 64240 42960 5664 64
...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
- C. D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012).
-
T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, 2^k*T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)
A142964
a(n) = 6*2^n - 2*n - 5.
Original entry on oeis.org
1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821
Offset: 0
a(3) = 6*2^3 - 2*3 - 5 = 37.
- Eric Billault, Walter Damin, Robert Ferréol, and Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (1) pp 26, 43-44.
-
seq(6*2^n-2*n-5,n=0..40); # Bernard Schott, Dec 16 2020
-
a[n_]:=6*2^n-2n-5;Array[a,32,0] (* or *) CoefficientList[Series[(1+x)/((1-x)^2*(1-2*x)),{x,0,31}],x] (* or *) LinearRecurrence[{4,-5,2},{1,5,15},32] (* James C. McMahon, Aug 12 2025 *)
-
Vec((1+z)/((1-z)^2*(1-2*z)) + O(z^50)) \\ Michel Marcus, Jun 18 2017
Comments