cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A049054 Numbers k such that 10^k + 3 is prime.

Original entry on oeis.org

1, 2, 5, 6, 11, 17, 18, 39, 56, 101, 105, 107, 123, 413, 426, 2607, 7668, 10470, 11021, 17753, 26927, 60776, 98288, 300476, 509546
Offset: 1

Views

Author

Keywords

Comments

A102006 is another version of the same sequence. - N. J. A. Sloane, Jan 28 2010
Verified existing 21 terms. If another term exists, it is > 39456. - Robert Price, Aug 16 2010

Examples

			5 is a term since 10^5 + 3 = 100003 is a prime.
6 is a term since 10^6 + 3 = 1000003 is a prime.
		

Crossrefs

Programs

Formula

a(n) = A102006(n) + 1.

Extensions

More terms from Robert G. Wilson v, Jun 15 2002
a(16) from Ray Chandler, Oct 09 2003
a(17)-a(20) from Robert G. Wilson v, Jan 18 2005
a(21) from Jason Earls, Jan 01 2008
a(22) from Robert Price, Jan 09 2011
a(23) from Robert Price, Mar 03 2011
a(24) from Edward A. Trice, Oct 21 2012
a(25) from Paul Bourdelais, Jan 28 2021

A062339 Primes whose sum of digits is 4.

Original entry on oeis.org

13, 31, 103, 211, 1021, 1201, 2011, 3001, 10111, 20011, 20101, 21001, 100003, 102001, 1000003, 1011001, 1020001, 1100101, 2100001, 10010101, 10100011, 20001001, 30000001, 101001001, 200001001, 1000000021, 1000001011, 1000010101, 1000020001, 1000200001, 1002000001, 1010000011
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Comments

Is this sequence (and its brothers A062337, A062341 and A062343) infinite?
10^A049054(m)+3 and 3*10^A056807(m)+1 are subsequences. A107715 (primes containing only digits from set {0,1,2,3}) is a supersequence. Terms not containing the digit 3 are either terms of A020449 (primes that contain digits 0 and 1 only) or of A106100 (primes with maximal digit 2) - and thus terms of these sequences' union A036953 (primes containing only digits from set {0,1,2}). - Rick L. Shepherd, May 23 2005

Examples

			3001 is a prime with sum of digits = 4, hence belongs to the sequence.
		

Crossrefs

Subsequence of A062338, A107288, and A107715 (primes with digits <= 3).
A159352 is a subsequence.
Cf. A000040 (primes), A052218 (digit sum = 4), A061239 (primes == 4 (mod 9)).
Cf. Primes p with digital sum equal to k: {2, 11 and 101} for k=2; this sequence (k=4), A062341 (k=5), A062337 (k=7), A062343 (k=8), A107579 (k=10), A106754 (k=11), A106755 (k=13), A106756 (k=14), A106757 (k=16), A106758 (k=17), A106759 (k=19), A106760 (k=20), A106761 (k=22), A106762 (k=23), A106763 (k=25), A106764 (k=26), A048517 (k=28), A106766 (k=29), A106767 (k=31), A106768 (k=32), A106769 (k=34), A106770 (k=35), A106771 (k=37), A106772 (k=38), A106773 (k=40), A106774 (k=41), A106775 (k=43), A106776 (k=44), A106777 (k=46), A106778 (k=47), A106779 (k=49), A106780 (k=50), A106781 (k=52), A106782 (k=53), A106783 (k=55), A106784 (k=56), A106785 (k=58), A106786 (k=59), A106787 (k=61), A107617 (k=62), A107618 (k=64), A107619 (k=65), A106807 (k=67), A244918 (k=68), A181321 (k=70).
Cf. A049054 (10^k+3 is prime), A159352 (these primes).
Cf. A056807 (3*10^k+1 is prime), A259866 (these primes).
Cf. A020449 (primes with digits 0 and 1), A036953 (primes with digits <= 2), A106100 (primes with largest digit = 2), A069663, A069664 (smallest resp. largest n-digit prime with minimum digit sum).

Programs

  • Magma
    [p: p in PrimesUpTo(800000000) | &+Intseq(p) eq 4]; // Vincenzo Librandi, Jul 08 2014
  • Maple
    N:= 20: # to get all terms < 10^N
    B[1]:= {1}:
    B[2]:= {2}:
    B[3]:= {3}:
    A:= {}:
    for d from 2 to N do
       B[4]:= map(t -> 10*t+1,B[3]) union  map(t -> 10*t+3,B[1]);
       B[3]:= map(t -> 10*t, B[3]) union map(t -> 10*t+1,B[2]) union map(t -> 10*t+2,B[1]);
       B[2]:= map(t -> 10*t, B[2]) union map(t -> 10*t+1,B[1]);
       B[1]:= map(t -> 10*t, B[1]);
       A:= A union select(isprime,B[4]);
    od:
    sort(convert(A,list)); # Robert Israel, Dec 28 2015
  • Mathematica
    Union[FromDigits/@Select[Flatten[Table[Tuples[{0,1,2,3},k],{k,9}],1],PrimeQ[FromDigits[#]]&&Total[#]==4&]] (* Jayanta Basu, May 19 2013 *)
    FromDigits/@Select[Tuples[{0,1,2,3},10],Total[#]==4&&PrimeQ[FromDigits[#]]&] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    for(a=1,20,for(b=0,a,for(c=0,b,if(isprime(k=10^a+10^b+10^c+1),print1(k", "))))) \\ Charles R Greathouse IV, Jul 26 2011
    
  • PARI
    select( {is_A062339(p,s=4)=sumdigits(p)==s&&isprime(p)}, primes([1,10^7])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
    
  • PARI
    A062339_upto_length(L,s=4,a=List(),u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Vecrev(a) \\ M. F. Hasler, Mar 09 2022
    

Formula

Intersection of A052218 (digit sum 4) and A000040 (primes). - M. F. Hasler, Mar 09 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
More terms from Rick L. Shepherd, May 23 2005
More terms from Lekraj Beedassy, Dec 19 2007

A228034 Primes of the form 9^n + 2.

Original entry on oeis.org

3, 11, 83, 6563, 59051, 4782971, 282429536483, 2541865828331, 150094635296999123, 57264168970223481226273458862846808078011946891, 30432527221704537086371993251530170531786747066637051
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A004051 (primes of the form 2^a+3^b), A057735 (primes of the form 3^n+2), A090649 (associated n), A104070 (primes of the form 2^n+9), A159352 (primes of the form 10^n+3), A176495 (primes of the form 27^n+2), A182330 (primes of the form 5^n+2).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is 9^n+2];
  • Mathematica
    Select[Table[9^n + 2, {n, 0, 300}], PrimeQ]

A104638 Number of odd digits in n-th prime.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Zak Seidov, Mar 18 2005

Keywords

Comments

The only zero is the first term. Sequence is unbounded. - Zak Seidov, Jan 12 2016
From Robert Israel, Jan 12 2016: (Start)
For any N, the asymptotic density of terms >= N is 1.
On the other hand, a(n) = 2 if prime(n) is in A159352, which is conjectured to be infinite.
Record values: a(2) = 1, a(5) = 2, a(30) = 3, a(187) = 4, a(1346) = 5, a(10545) = 6, a(86538) = 7, a(733410) = 8.
(End)

Crossrefs

Cf. A154764 (1 odd digit), A155071 (2 odd digits), A030096 (all digits odd).

Programs

  • Maple
    seq(nops(select(type, convert(ithprime(i),base,10),odd)),i=1..100); # Robert Israel, Jan 12 2016
    # alternative
    A104638 := proc(n)
        local a,dgs,d ;
        ithprime(n) ;
        dgs := convert(%,base,10) ;
        a := 0 ;
        for d in dgs do
            a := a+modp(d,2) ;
        end do:
        a ;
    end proc:
    seq(A104638(n),n=1..40) ; # R. J. Mathar, Jul 13 2025
  • Mathematica
    Table[Count[IntegerDigits[Prime[n]],?OddQ],{n,100}] (* _Harvey P. Dale, Jan 22 2012 *)
    Table[Total[Mod[IntegerDigits[Prime[n]], 2]], {n, 100}] (* Vincenzo Librandi, Jan 13 2016 *)
  • PARI
    a(n)=vecsum(digits(prime(n)%2)) \\ Zak Seidov, Jan 12 2016

Formula

a(n) = A196564(A000040(n)). - Michel Marcus, Oct 05 2013

A102006 Indices of primes in sequence defined by A(0) = 13, A(n) = 10*A(n-1) - 27 for n > 0.

Original entry on oeis.org

0, 1, 4, 5, 10, 16, 17, 38, 55, 100, 104, 106, 122, 412, 425, 2606, 7667, 10469, 11020, 17752, 26926, 60775, 98287, 300475
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

Keywords

Comments

Numbers n such that 10*10^n + 3 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 0 followed by digit 3 is prime.
Numbers corresponding to terms <= 425 are certified primes.
No other terms <99,999.

Examples

			100003 is prime, hence 4 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • PARI
    a=13;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
    
  • PARI
    for(n=0,1500,if(isprime(10*10^n+3),print1(n,",")))

Formula

a(n) = A049054(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(22)=60775, a(23)=98287 from Robert Price, Mar 03 2011
a(24) from A049054 by Ray Chandler, May 01 2015

A228026 Primes of the form 4^k + 3.

Original entry on oeis.org

7, 19, 67, 4099, 65539, 262147, 268435459, 1073741827, 19342813113834066795298819
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Examples

			67 is a term because 4^3 + 3 = 67 is prime.
		

Crossrefs

Cf. A089437 (associated k).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), this sequence (r=4, h=3), A228027 (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  4^n+3];
  • Mathematica
    Select[Table[4^n + 3, {n, 0, 200}], PrimeQ]

Formula

a(n) = 4^A089437(n) + 3. - Elmo R. Oliveira, Nov 14 2023

Extensions

Cross-references corrected by Robert Price, Aug 01 2017

A228032 Primes of the form 8^n + 3.

Original entry on oeis.org

11, 67, 4099, 32771, 262147, 1073741827, 19342813113834066795298819
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217354 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=3), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  8^n+3];
  • Mathematica
    Select[Table[8^n + 3, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228029 Primes of the form 5^n + 6.

Original entry on oeis.org

7, 11, 31, 131, 631, 1220703131
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A089142 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), this sequence (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+6];
  • Mathematica
    Select[Table[5^n + 6, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228030 Primes of the form 7^n + 6.

Original entry on oeis.org

7, 13, 349, 33232930569607, 2651730845859653471779023381607
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217130 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=6), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+6];
  • Mathematica
    Select[Table[7^n + 6, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228031 Primes of the form 7^n + 10.

Original entry on oeis.org

11, 17, 59, 353, 2411, 117659, 823553, 1977326753, 9387480337647754305659, 3219905755813179726837617, 44567640326363195900190045974568017, 616873509628062366290756156815389726793178417, 30226801971775055948247051683954096612865741953
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217132 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=10), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+10];
  • Mathematica
    Select[Table[7^n + 10, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017
Showing 1-10 of 14 results. Next