cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A161702 a(n) = (-n^3 + 9n^2 - 5n + 3)/3.

Original entry on oeis.org

1, 2, 7, 14, 21, 26, 27, 22, 9, -14, -49, -98, -163, -246, -349, -474, -623, -798, -1001, -1234, -1499, -1798, -2133, -2506, -2919, -3374, -3873, -4418, -5011, -5654, -6349, -7098, -7903, -8766, -9689, -10674, -11723, -12838, -14021, -15274
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 14:
a(n) = A027750(A006218(13) + k + 1), 0 <= k < A000005(14).

Examples

			Differences of divisors of 14 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     7    14
     1     5     7
        4     2
          -2
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + C(n,1) + 4*C(n,2) - 2*C(n,3).
G.f.: (1-2*x+5*x^2-6*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=1, a(1)=2, a(2)=7, a(3)=14, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 15 2013

A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3.

Original entry on oeis.org

1, 3, 5, 15, 41, 91, 173, 295, 465, 691, 981, 1343, 1785, 2315, 2941, 3671, 4513, 5475, 6565, 7791, 9161, 10683, 12365, 14215, 16241, 18451, 20853, 23455, 26265, 29291, 32541, 36023, 39745, 43715, 47941, 52431, 57193, 62235, 67565, 73191, 79121
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 15:
a(n) = A027750(A006218(14) + k + 1), 0 <= k < A000005(15).

Examples

			Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula:
  1     3     5    15
     2     2    10
        0     8
           8
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3).
G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012

A161707 a(n) = (4*n^3 - 9*n^2 + 11*n + 3)/3.

Original entry on oeis.org

1, 3, 7, 21, 53, 111, 203, 337, 521, 763, 1071, 1453, 1917, 2471, 3123, 3881, 4753, 5747, 6871, 8133, 9541, 11103, 12827, 14721, 16793, 19051, 21503, 24157, 27021, 30103, 33411, 36953, 40737, 44771, 49063, 53621, 58453, 63567, 68971, 74673
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 21:
a(n) = A027750(A006218(20) + k + 1), 0 <= k < A000005(21).

Examples

			Differences of divisors of 21 to compute the coefficients of their interpolating polynomial, see formula:
  1     3     7    21
     2     4    14
        2    10
           8
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + 2*C(n,1) + 2*C(n,2) + 8*C(n,3).
G.f.: (7*x^3 + x^2 - x + 1)/(x-1)^4. - Harvey P. Dale, Mar 28 2011
E.g.f.: (1/3)*(4*x^3 + 3*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017

A161711 a(n) = (-4*n^3 + 27*n^2 - 20*n + 3)/3.

Original entry on oeis.org

1, 2, 13, 26, 33, 26, -3, -62, -159, -302, -499, -758, -1087, -1494, -1987, -2574, -3263, -4062, -4979, -6022, -7199, -8518, -9987, -11614, -13407, -15374, -17523, -19862, -22399, -25142, -28099, -31278, -34687, -38334, -42227, -46374, -50783
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 26:
a(n) = A027750(A006218(25) + k + 1), 0 <= k < A000005(26).

Examples

			Differences of divisors of 26 to compute the coefficients of their interpolating polynomial, see formula:
  1     2    13    26
     1    11    13
       10     2
          -8
		

Crossrefs

Programs

  • Magma
    [(-4*n^3 + 27*n^2 - 20*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,2,13,26},40] (* Harvey P. Dale, Jul 02 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x+11*x^2-18*x^3)/(1-x)^4) \\ G. C. Greubel, Jul 16 2017

Formula

a(n) = C(n,0) + C(n,1) + 10*C(n,2) - 8*C(n,3).
G.f.: (1-2*x+11*x^2-18*x^3)/(1-x)^4. - Bruno Berselli, Jul 17 2011

A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3.

Original entry on oeis.org

1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 27:
a(n) = A027750(A006218(26) + k + 1), 0 <= k < A000005(27).
a(n), n > 0 is the number of points of the half-integer lattice in R^n that lie in the open unit ball. - Tom Harris, Jun 15 2021

Examples

			Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula:
  1     3     9    27
     2     6    18
        4    12
           8
		

Programs

Formula

a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).
G.f.: (x+1)*(1+x*(5*x-2))/(x-1)^4. - Harvey P. Dale, Apr 13 2011
E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017
a(n) -a(n-1) = A005899(n-1), n>=2. - R. J. Mathar, Aug 03 2025

A128470 a(n) = 30*n + 1.

Original entry on oeis.org

1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361, 391, 421, 451, 481, 511, 541, 571, 601, 631, 661, 691, 721, 751, 781, 811, 841, 871, 901, 931, 961, 991, 1021, 1051, 1081, 1111, 1141, 1171, 1201, 1231, 1261, 1291, 1321, 1351, 1381, 1411, 1441, 1471
Offset: 0

Views

Author

Cino Hilliard, May 06 2007

Keywords

Comments

Possible upper bounds of twin primes pairs ending in 1: For a 30k + r "wheel", k > 0, r = 1, 13, 19 are the only possible values that can form an upper bound of a twin prime pair. The 30k+r wheel gives the sequence 1, 7, 11, 13, 17, 19, 23, 29 31, 37, 41, 43, 47, 49, 53, 59, ... which is frequently used in prime number sieves to skip multiples of 2, 3, 5. The fact that subtracting 2 from 30k+7, 11, 17, 23 will give us a multiple of 3 or 5 precludes these numbers from being an upper bound of a twin prime pair. This leaves us with r = 1, 13, 19 for k > 0 as the only possible cases to form an upper bound of a twin prime pair. 1, 13, 19 concludes the 6 numbers of the 8 number wheel that can form part of a twin prime pair.

Examples

			61 = 30 * 2 + 1, the upper part of the twin prime pair 59, 61.
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n > 1. - Vincenzo Librandi, Dec 30 2014
G.f.: (1 + 29*x)/(1 - x)^2. - Vincenzo Librandi, Dec 30 2014
E.g.f.: (1 + 30*x)*exp(x). - G. C. Greubel, Apr 04 2016

A161709 a(n) = 22*n + 1.

Original entry on oeis.org

1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, 595, 617, 639, 661, 683, 705, 727, 749, 771, 793, 815, 837, 859, 881, 903, 925, 947, 969, 991, 1013, 1035, 1057, 1079, 1101, 1123
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

References

  • Italo Ghersi, Matematica dilettevole e curiosa, p. 139, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 02 2009]

Crossrefs

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1 + 21*x)/(1-x)^2.
E.g.f.: (1 + 22*x)*exp(x). (End)

A161714 a(n) = 28*n + 1.

Original entry on oeis.org

1, 29, 57, 85, 113, 141, 169, 197, 225, 253, 281, 309, 337, 365, 393, 421, 449, 477, 505, 533, 561, 589, 617, 645, 673, 701, 729, 757, 785, 813, 841, 869, 897, 925, 953, 981, 1009, 1037, 1065, 1093, 1121, 1149, 1177, 1205, 1233, 1261, 1289, 1317, 1345, 1373
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Crossrefs

Programs

Formula

G.f.: (1 + 27*x)/(1-x)^2. - Indranil Ghosh, Apr 05 2017
E.g.f.: (1 + 28*x)*exp(x). - G. C. Greubel, Sep 18 2019

A161856 Triangle read by rows in which row n lists the coefficients of the interpolating polynomial for its divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 0, 2, 1, 6, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 0, 1, 10, 1, 1, 0, 0, 1, 1, 1, 12, 1, 1, 4, -2, 1, 2, 0, 8, 1, 1, 1, 1, 1, 1, 16, 1, 1, 0, 2, -4, 12, 1, 18, 1, 1, 1, -2, 7, -11, 1, 2, 2, 8, 1, 1, 8, -6, 1, 22, 1, 1, 0, 0, 1, -3, 8, -12, 1, 4, 16, 1, 1, 10, -8, 1, 2, 4, 8, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 20 2009

Keywords

Comments

EDP(n,x) = SUM(a(A006218(n)-1+i)*A007318(x,i-1): 1<=i<=A000005(n)) is the interpolating polynomial for the divisors of n, see also A161700;
A000005(n) = length of n-th row, i.e. same length as n-th row in A027750;
sum of n-th row, n>1: A161857(n) = SUM(a(A006218(n-1)+i): 1<=i<=A000005(n));
a(A006218(n)+1) = 1.

Examples

			1; 1,1; 1,2; 1,1,1; 1,4; 1,1,0,2; 1,6; 1,1,1,1; 1,2,4; ... .
		

Crossrefs

A273135 Difference table of the divisors of the positive integers (with every table read by antidiagonals downwards).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 4, 2, 1, 1, 5, 4, 1, 2, 1, 3, 1, 0, 6, 3, 2, 2, 1, 7, 6, 1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 1, 3, 2, 9, 6, 4, 1, 2, 1, 5, 3, 2, 10, 5, 2, 0, 1, 11, 10, 1, 2, 1, 3, 1, 0, 4, 1, 0, 0, 6, 2, 1, 1, 1, 12, 6, 4, 3, 2, 1, 1, 13, 12, 1, 2, 1, 7, 5, 4, 14, 7, 2, -2, 1, 3, 2, 5, 2, 0, 15, 10, 8, 8
Offset: 1

Views

Author

Omar E. Pol, May 18 2016

Keywords

Comments

This is an irregular tetrahedron T(n,j,k) in which the slice n lists the elements of the j-th antidiagonal of the difference triangle of the divisors of n.
The first row of the slice n is also the n-th row of the triangle A027750.
The bottom entry of the slice n is A187202(n).
The number of elements in the n-th slice is A000217(A000005(n)) = A184389(n).
The sum of the elements of the n-th slice is A273103(n).
The antidiagonal sums give A273262.
If n is a power of 2 the antidiagonals are also the divisors of the powers of 2 from 1 to n in decreasing order, for example if n = 8 the finite sequence of antidiagonals is [1], [2, 1], [4, 2, 1], [8, 4, 2, 1].
First differs from A272121 at a(92).

Examples

			The tables of the first nine positive integers are
  1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
     1;    2;    1, 2;    4;    1, 1, 3;    6;    1, 2, 4;    2, 6;
                 1;             0, 2;             1, 2;       4;
                                2;                1;
For n = 18 the difference table of the divisors of 18 is
  1,  2, 3, 6, 9, 18;
  1,  1, 3, 3, 9;
  0,  2, 0, 6;
  2, -2, 6;
 -4,  8;
 12;
This table read by antidiagonals downwards gives the finite subsequence [1], [2, 1], [3, 1, 0], [6, 3, 2, 2], [9, 3, 0, -2, -4], [18, 9, 6, 6, 8, 12].
		

Crossrefs

Programs

  • Mathematica
    Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m, 1, -1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
Previous Showing 21-30 of 32 results. Next