A068424
Triangle of falling factorials, read by rows: T(n, k) = n*(n-1)*...*(n-k+1), n > 0, 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 6, 6, 4, 12, 24, 24, 5, 20, 60, 120, 120, 6, 30, 120, 360, 720, 720, 7, 42, 210, 840, 2520, 5040, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800
Offset: 1
Triangle begins:
1;
2, 2;
3, 6, 6;
4, 12, 24, 24;
5, 20, 60, 120, 120;
6, 30, 120, 360, 720, 720;
Square begins:
1, 2, 3, 4, 5, ...
2, 6, 12, 20, 30, ...
6, 24, 60, 120, 210, ...
24, 120, 360, 840, 1680, ...
120, 720, 2520, 6720, 15120, ...
- G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Fifth edition, 1979, p. 64.
- O. Rigge, 9th Congr. Math. Scan., Helsingfors, 1938, Mercator, 1939, pp. 155-160.
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.1 (iii), p. 131.
- N. Saradha and T. N. Shorey, Almost Squares and Factorisations in Consecutive Integers, Compositio Mathematica 138 (1) (2003) 113-124.
- Eric Weisstein's World of Mathematics, Falling Factorial.
-
Flatten[Table[n!/(n-k)!, {n, 10}, {k, n}]] (* or, from version 7: *)
Flatten[Table[FactorialPower[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, Jun 17 2011, updated Sep 29 2016 *)
-
T(n,k)=if(k<1 || k>n,0,n!/(n-k)!)
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A167572
The ED3 array read by antidiagonals.
Original entry on oeis.org
1, 5, 1, 23, 11, 1, 167, 83, 17, 1, 1473, 741, 183, 23, 1, 16413, 8169, 2043, 323, 29, 1, 211479, 106107, 26529, 4409, 503, 35, 1, 3192975, 1592235, 398025, 66345, 8175, 723, 41, 1, 54010305, 27062325, 6765975, 1127655, 140865, 13677, 983, 47, 1
Offset: 1
The ED3 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
5, 11, 17, 23, 29, 35, 41, 47, 53, 59
23, 83, 183, 323, 503, 723, 983, 1283, 1623, 2003
167, 741, 2043, 4409, 8175, 13677, 21251, 31233, 43959, 59765
1473, 8169, 26529, 66345, 140865, 266793, 464289, 756969, 1171905, 1739625
16413, 106107, 398025, 1127655, 2678325, 5623443, 10768737, 19194495, 32297805, 51834795
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
A167579 equals the row sums of the ED3 array read by antidiagonals.
A167580 is a triangle related to the a(n) formulas of the rows of the ED3 array.
A167583 is a triangle related to the GF(z) formulas of the rows of the ED3 array.
Cf.
A014481 (the 2^(n-1)*(n-1)!*(2*n-1) factor).
A167584
The ED4 array read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1
The ED4 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 6, 10, 14, 18, 22, 26, 30, 34, 38
13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
n\m| -4 -3 -2 -1 0
-----------------------------------
0 | 0 0 0 0 0
1 | 1 1 1 1 1
2 | -18 -14 -10 -6 -2
3 | 233 141 73 29 9
4 | -2844 -1428 -620 -228 -60
5 | 39309 17877 7149 2325 525
...
Column 0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf.
A002866 (the 2^(n-1)*n! factor).
-
T := proc (n, m) option remember;
if n = 0 then 0
elif n = 1 then 1
else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
end if;
end proc:
#square array read by antidiagonals
seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
# Peter Bala, Nov 06 2016
-
T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)
A167558
The second right hand column of triangle A167557.
Original entry on oeis.org
1, 12, 160, 2688, 55296, 1351680, 38338560, 1238630400, 44920995840, 1807409479680, 79906524364800, 3850733459865600, 200907832688640000, 11282983883794022400, 678650586195610828800, 43527244493925384192000
Offset: 2
Equals the second right hand column of triangle
A167557.
-
Table[4^(n-2) (n-2)! (2n-3)!/(2n-4)!,{n,2,20}] (* Harvey P. Dale, Aug 21 2013 *)
Original entry on oeis.org
1, 5, 46, 598, 10056, 207960, 5111856, 145721520, 4728528000, 172134253440, 6948393580800, 308058678385920, 14882061698380800, 778136819786726400, 43783908789625804800, 2638014817853286144000, 169455373956672285081600
Offset: 1
Equals row sums of triangle
A167557.
-
Table[Sum[4^(m - 1) *(m - 1)! * (n + m - 2)!/(2*m - 2)!, {m, 1, n}], {n, 1, 10}] (* G. C. Greubel, Jun 15 2016 *)
Comments