cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A068424 Triangle of falling factorials, read by rows: T(n, k) = n*(n-1)*...*(n-k+1), n > 0, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 6, 4, 12, 24, 24, 5, 20, 60, 120, 120, 6, 30, 120, 360, 720, 720, 7, 42, 210, 840, 2520, 5040, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800
Offset: 1

Views

Author

David Wasserman, Mar 13 2003

Keywords

Comments

Triangle in which the n-th row begins with n and the k-th term is obtained by multiplying the (k-1)-th term by (n-k+1) until n-k+1 = 1. - Amarnath Murthy, Nov 11 2002
Has many diagonals in common with A105725. - Zerinvary Lajos, Apr 14 2006
Also: the square array of rising factorials A(n,k) = n*(n+1)*(n+2)*...*(n+k-1) read by antidiagonals downwards. There are no perfect squares in T(n,k) for k >= 2 [see Rigge]. T(n,k) is divisible by a prime exceeding k, if n >= 2*k [see Saradha and Shorey]. - R. J. Mathar, May 02 2007
T(n,k) is the number of injective functions f from {1,...,k} into {1,...,n}, since there are n choices for f(1), then (n-1) choices for f(2), ... and (n-k+1) choices for f(k). E.g., T(3,2)=6 because there are exactly 6 injective functions f:{1,2}->{1,2,3}, namely, f1={(1,1),(2,2)}, f2={(1,1),(2,3)}, f3={(1,2),(2,1)}, f4={(1,2),(2,3)}, f5={(1,3),(2,1)} and f6={(1,3),(2,2)}. - Dennis P. Walsh, Oct 18 2007
Permuted words defined by the connectivity of regular simplices are related to T by T = A135278 * (1!, 2!, 3!, 4!, ...). E.g., for T(4,k) with k-1 = simplex number, label the vertices of a tetrahedron with a, b, c, d, then the 0-simplex, the points, a,b,c,d gives 4 * 1 = 4 words; the 1-simplex, the edges: (ab or ba), (ac or ca), (ad or da), (bc or cb), (bd or db), (cd or dc) gives 6 * 2 = 12 words; the 2-simplex, the faces: (abc or ...), (acd or ...), (adb or ...), (bcd or ...) gives 4 * 6 = 24 words; the 3-simplex, (abcd or ....) gives 1 * 24 = 24 words. - Tom Copeland, Dec 08 2007
Reversal of the triangle by rows = (n+1) * n-th row of triangle A094587. - Gary W. Adamson, May 03 2009
From Geoffrey Critzer, May 06 2009: (Start)
The rectangular array R(n,k), read by diagonals is the number of ways n people can queue up in k (possibly empty) distinct queues. R(n,k) = (n+k-1)!/(k-1)!; R(n,k) = (n+k-1)*R(n-1,k).
Northwest corner:
1, 2, 3, 4, 5, ...;
2, 6, 12, 20, 30, ...;
6, 24, 60, 120, 210, ...;
24, 120, 360, 840, 1680, ...;
120, 720, 2520, 6720, 15120, ...;
...
Example: R(2,2)=6 because there are six ways that two people can get in line at a fast food restaurant that has two order windows open. Let 1 and 2 represent the two people and a | will separate the lines. 12|; 21|; |12; |21; 1|2; 2|1. (End)
Cf. [Hardy and Wright], Theorem 34.
The e.g.f. of the Norlund generalized Bernoulli (Appell) polynomials of order m, NB(n,x;m), is given by exponentiation of the e.g.f. of the Bernoulli numbers, i.e., multiple binomial self-convolutions of the Bernoulli numbers, through the e.g.f. exp[NB(.,x;m)t] = [t/(e^t-1)]^(m+1) * e^(xt). Norlund gave the relation to the factorials (x-1)!/(x-1-k)! = (x-1) ... (x-k) = NB(k,x;k), so T(n,k) = NB(k,n+1;k). - Tom Copeland, Oct 01 2015
T(n,k) is the number of sequences without repetition (partial permutations) of k elements taken from an n-set. For sequences with repetition (k-tuples) cf. A075363. - Manfred Boergens, Jun 18 2023

Examples

			Triangle begins:
  1;
  2,  2;
  3,  6,   6;
  4, 12,  24,  24;
  5, 20,  60, 120, 120;
  6, 30, 120, 360, 720, 720;
Square begins:
    1,   2,    3,    4,     5, ...
    2,   6,   12,   20,    30, ...
    6,  24,   60,  120,   210, ...
   24, 120,  360,  840,  1680, ...
  120, 720, 2520, 6720, 15120, ...
		

References

  • G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Fifth edition, 1979, p. 64.
  • O. Rigge, 9th Congr. Math. Scan., Helsingfors, 1938, Mercator, 1939, pp. 155-160.

Crossrefs

Same as A008279 for k>0.
Cf. A094587. - Gary W. Adamson, May 03 2009
Appears in A167546. - Johannes W. Meijer, Nov 12 2009

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)!, {n, 10}, {k, n}]] (* or, from version 7: *)
    Flatten[Table[FactorialPower[n, k], {n, 10}, {k, n}]]  (* Jean-François Alcover, Jun 17 2011, updated Sep 29 2016 *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!/(n-k)!)

Formula

As a triangle: T(n,k) = k!*binomial(n,k) = n!/(n-k)!, 1 <= k <= n. - Michael Somos, Apr 05 2003
E.g.f.: exp(x)*x*y/(1-x*y). - Michael Somos, Apr 05 2003
As a square: A(n,k) = (n+k-1)!/(k-1)!, 1 <= k <= n. - Ron L.J. van den Burg, Nov 28 2021

A167560 The ED2 array read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED2 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED2 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
The ED2 array is related to the EG1 matrix, see A162005, because sum(EG1(2*m-1,n) * z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n), y=0..infinity).
For the ED1, ED3 and ED4 arrays see A167546, A167572 and A167584.

Examples

			The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
		

Crossrefs

A000012, A005843 (n>=1), 2*A104249 (n>=1), A167561, A167562 and A167563 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
Cf. A162005 (EG1 triangle).
Cf. A167546 (ED1 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
    # alternative
    A167560 := proc(n,m)
        option remember ;
        if m > n then
            n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
        else
            4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
        end if;
    end proc:
    seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = ((m-1)!/((m-n-1)!))*int(sinh(y*(2*n))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n-1,m-k),k=0..n-1) = n!
which in its turn leads to, see A167569,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! if m<=n.

A167572 The ED3 array read by antidiagonals.

Original entry on oeis.org

1, 5, 1, 23, 11, 1, 167, 83, 17, 1, 1473, 741, 183, 23, 1, 16413, 8169, 2043, 323, 29, 1, 211479, 106107, 26529, 4409, 503, 35, 1, 3192975, 1592235, 398025, 66345, 8175, 723, 41, 1, 54010305, 27062325, 6765975, 1127655, 140865, 13677, 983, 47, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED3 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED3 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED4 arrays see A167546, A167560 and A167584.

Examples

			The ED3 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
5, 11, 17, 23, 29, 35, 41, 47, 53, 59
23, 83, 183, 323, 503, 723, 983, 1283, 1623, 2003
167, 741, 2043, 4409, 8175, 13677, 21251, 31233, 43959, 59765
1473, 8169, 26529, 66345, 140865, 266793, 464289, 756969, 1171905, 1739625
16413, 106107, 398025, 1127655, 2678325, 5623443, 10768737, 19194495, 32297805, 51834795
		

Crossrefs

A000012, A016969, A167573, A167574 and A167575 equal the first five rows of the array.
A167576, A167577 and A167578 equal the first three columns of the array.
A167579 equals the row sums of the ED3 array read by antidiagonals.
A167580 is a triangle related to the a(n) formulas of the rows of the ED3 array.
A167583 is a triangle related to the GF(z) formulas of the rows of the ED3 array.
Cf. A014481 (the 2^(n-1)*(n-1)!*(2*n-1) factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167584 (ED4 array).

Formula

a(n,m) = ((2*m-1)!!/ (2*m-2*n-1)!!)*int(sinh(y*(2*n-1))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n,m-k),k=0..n-1) = 2^(n-1)*(n-1)!*(2*n-1).

A167584 The ED4 array read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED4 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED4 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED3 arrays see A167546, A167560 and A167572.
The Madhava-Gregory-Leibniz series representation for Pi/4 is the case m = 0 of the following more general result: for m = 0,1,2,... there holds 1/(2*m)! * Pi/4 = Sum_{k >= 0} ( (-1)^(m+k) * 1/Product_{j = -m .. m} (2*k + 1 + 2*j) ). The entries of this table are given by truncating these series to n-1 terms and then scaling by certain double factorials -- see the formula below. - Peter Bala, Nov 06 2016

Examples

			The ED4 array begins with:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1
  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
  13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
  76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
  789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
  7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
  ...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
  n\m|     -4     -3    -2    -1    0
  -----------------------------------
   0 |      0      0     0     0    0
   1 |      1      1     1     1    1
   2 |    -18    -14   -10    -6   -2
   3 |    233    141    73    29    9
   4 |  -2844  -1428  -620  -228  -60
   5 |  39309  17877  7149  2325  525
  ...
Column  0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
		

Crossrefs

A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the array.
A024199, A167588 and A167589 equal the first three columns of the array.
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf. A002866 (the 2^(n-1)*n! factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167572 (ED3 array). Cf. A001193, A003881.

Programs

  • Maple
    T := proc (n, m) option remember;
          if n = 0 then 0
           elif n = 1 then 1
           else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
          end if;
         end proc:
    #square array read by antidiagonals
    seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
    # Peter Bala, Nov 06 2016
  • Mathematica
    T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)

Formula

a(n,m) = ((2*m-3)!!/(2*(2*m-2*n-3)!!))*Integral_{y=0..oo} sinh(y*(2*n))/(cosh(y))^(2*m-1) dy for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = 2^(n-1)*n!
From Peter Bala, Nov 06 2016: (Start)
T(n,m) = ((2*m - 3)!!/(2*(2*m - 2*n - 3)!!)) * Sum_{k = 0..n-1} (-1)^(k+1)*binomial(2*n - k - 1, k)*2^(2*n - 2*k - 1)*1/(2*n - 2*m - 2*k + 1), for n and m >= 0.
Note the double factorial for a negative odd integer N is defined in terms of the gamma function as N!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
T(n, m) = (2*m - 3)!! * (2*n + 2*m - 3)!! * Sum_{k = 0..n-1} ( (-1)^(m + k + 1) / Product_{j = -(m-1) .. m-1} (2*k + 1 + 2*j) ).
Using this result we can extend the table to nonpositive values of m (the column index). Column 0 is a signed version of A001193. We have for m <= 0, T(n,m) = (2*n - 2*|m| - 3)!!/(2*|m| + 1)!! * Sum_{k = 0..n-1} (-1)^k*Product_{j = -|m|..|m|} (2*k + 1 + 2*j).
Recurrence: T(n, m) = (4*m - 2)*T(n-1, m) + (2*n + 2*m - 5)*(2*n - 2*m - 1)*T(n-2, m).
For a fixed value of n, the entries in row n are polynomial in the value of the column index m. The first few polynomials are [1, 4*m - 2, 12*m^2 - 8*m + 9, 32*m^3 - 16*m^2 + 120*m - 60, 80*m^4 + 952*m^2 - 768*m + 525, ...]. (End)

A167558 The second right hand column of triangle A167557.

Original entry on oeis.org

1, 12, 160, 2688, 55296, 1351680, 38338560, 1238630400, 44920995840, 1807409479680, 79906524364800, 3850733459865600, 200907832688640000, 11282983883794022400, 678650586195610828800, 43527244493925384192000
Offset: 2

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

Triangle A167557 is the lower left triangle of the ED1 array A167546.

Crossrefs

A167546 is the ED1 array.
Equals the second right hand column of triangle A167557.

Programs

  • Mathematica
    Table[4^(n-2) (n-2)! (2n-3)!/(2n-4)!,{n,2,20}] (* Harvey P. Dale, Aug 21 2013 *)

Formula

a(n) = 4^(n-2)*(n-2)!*(2*n-3)!/(2*n-4)!.
(-2*n+5)*a(n) +4*(2*n-3)*(n-2)*a(n-1)=0. - R. J. Mathar, Apr 01 2015

A167559 The row sums of triangle A167557.

Original entry on oeis.org

1, 5, 46, 598, 10056, 207960, 5111856, 145721520, 4728528000, 172134253440, 6948393580800, 308058678385920, 14882061698380800, 778136819786726400, 43783908789625804800, 2638014817853286144000, 169455373956672285081600
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

Triangle A167557 is the lower left triangle of the ED1 array A167546.

Crossrefs

A167546 is the ED1 array.
Equals row sums of triangle A167557.

Programs

  • Mathematica
    Table[Sum[4^(m - 1) *(m - 1)! * (n + m - 2)!/(2*m - 2)!, {m, 1, n}], {n, 1, 10}] (* G. C. Greubel, Jun 15 2016 *)

Formula

a(n) = Sum_{m=1..n} (4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)!).
Previous Showing 11-16 of 16 results.