cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A173134 a(n) = Sinh[(2n-1)ArcCosh[n]]^2.

Original entry on oeis.org

-1, 0, 675, 11309768, 878801253135, 208241673295152024, 118270071682117442287235, 137788343929239264227213170608, 295355309179742652677310128859789375
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sinh[(2 n - 1) ArcCosh[n]]^2], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n-4) * n^(4*n-2). - Vaclav Kotesovec, Apr 05 2016

A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.

Original entry on oeis.org

1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(-1) = -1. - Artur Jasinski, Feb 10 2010
5*a(n) gives the x-values in the solution to the Pell equation x^2 - 26*y^2 = -1. - Colin Barker, Aug 24 2013

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
    CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 102*x + x^2).
a(n) = S(n, 2*51) + S(n-1, 2*51) = S(2*n, 2*sqrt(26)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 5*i)/(5*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=103. - Philippe Deléham, Nov 18 2008
a(n) = (1/5)*sinh((2*n-1)*arcsinh(5)), n >= 1. - Artur Jasinski, Feb 10 2010

Extensions

More terms from Harvey P. Dale, Aug 20 2017

A173170 a(n) = sin^2((2n-1)*arcsin(sqrt n)) = 1 - sin^2( (2n-1)*arccos(sqrt n)).

Original entry on oeis.org

0, 1, 50, 23763, 25421764, 48225038405, 142786923879606, 608447515452613207, 3527836867501829594888, 26710782540478226038759689, 255922222218837615280903143610, 3026917140685147530327256796600411
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[Sin[(2 n - 1) ArcSin[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)

Formula

a(n) ~ exp(-1) * 2^(4*n-4) * n^(2*n-1). - Vaclav Kotesovec, Apr 05 2016

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016

A173174 a(n) = cosh(2*n*arcsinh(sqrt(n))).

Original entry on oeis.org

1, 3, 49, 1351, 51841, 2550251, 153090001, 10850138895, 886731088897, 82094249361619, 8491781781142001, 970614726270742103, 121485428812828080001, 16525390478051500325307, 2427469037137019032095121, 382956978214541873571486751, 64576903826545426454350012417, 11591229031806966336496244914595
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(2*n, 2*k)*(n+1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Dec 29 2018
  • Maple
    A173174 := proc(n) cosh(2*n*arcsinh(sqrt(n))) ; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Cosh[(2 n) ArcSinh[Sqrt[n]]], 100]], {n, 0, 30}] (* Artur Jasinski *)
    Join[{1}, a[n_]:=Sum[Binomial[2 n, 2 k] (n + 1)^(n - k) n^k, {k, 0, n}]; Array[a, 25]] (* Vincenzo Librandi, Dec 29 2018 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 26 2018
    
  • PARI
    {a(n) = polchebyshev(n, 1, 2*n+1)} \\ Seiichi Manyama, Dec 29 2018
    

Formula

a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k. - Seiichi Manyama, Dec 26 2018
a(n) = T_{n}(2*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

Extensions

More terms from Seiichi Manyama, Dec 26 2018

A173171 a(n) = - sin^2((2n-1)*arccos(sqrt n)) = sin^2((2n-1)*arcsin(sqrt n)) - 1.

Original entry on oeis.org

-1, 0, 49, 23762, 25421763, 48225038404, 142786923879605, 608447515452613206, 3527836867501829594887, 26710782540478226038759688, 255922222218837615280903143609, 3026917140685147530327256796600410
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[-N[ Sin[(2 n - 1) ArcCos[Sqrt[n]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010; Typo fixed by Vincenzo Librandi, Jun 29 2014 *)

A211412 a(n) = 4*n^4 + 1.

Original entry on oeis.org

5, 65, 325, 1025, 2501, 5185, 9605, 16385, 26245, 40001, 58565, 82945, 114245, 153665, 202501, 262145, 334085, 419905, 521285, 640001, 777925, 937025, 1119365, 1327105, 1562501, 1827905, 2125765, 2458625, 2829125, 3240001, 3694085, 4194305, 4743685, 5345345, 6002501, 6718465, 7496645
Offset: 1

Views

Author

Alonso del Arte, Feb 10 2013

Keywords

Comments

Except for the first term, all terms are composite. a(n) is divisible by 5 if n is not.
Long before Aurifeuille, Euler discovered that 4n^4 + 1 = (2n^2 + 2n + 1)*(2n^2 - 2n + 1). For example, 325 = 4 * 3^4 + 1 = (2 * 3^2 + 2 * 3 + 1)*(2 * 3^2 - 2 * 3 + 1) = 25 * 13. Euler shared this discovery with Goldbach in a letter dated August 28, 1742. [Euler identity corrected by Graham Holmes, Jun 02 2023]
The terms of the sequence are the arithmetic mean of eight numbers located on concentric circles (see Avilov link). - Nicolay Avilov, Jan 22 2021

References

  • Don Knuth, The Art of Computer Programming: Seminumerical Algorithms, 3rd ed., New York: Addison-Wesley Professional (1997), p. 392.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005), p. 15.

Crossrefs

Cf. A207262 (subset).
After the first term, subsequence of A121944.
Cf. A053755.

Programs

Formula

G.f.: -x*(x^4+50*x^2+40*x+5) / (x-1)^5. - Colin Barker, Feb 11 2013
a(n) = A053755(n^2). - Michel Marcus, Sep 18 2015
a(n) = (2*n^2)^2 + 1^2 = (2*n^2-1)^2 + (2*n)^2. - Thomas Ordowski, Sep 18 2015
a(n) = A001844(n) * A001844(n+1) = A141046(n) + 1 = (A000583(n) * 4 ) + 1 = A016742(n) + A173121(n) + 1. - Bruce J. Nicholson, Jun 06 2017
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/4 - 1/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - sech(Pi/2)*Pi/4. (End)

A218486 Positive numbers differing from next 2 greater squares by squares.

Original entry on oeis.org

48, 96, 160, 240, 288, 336, 448, 480, 576, 720, 960, 1008, 1344, 1440, 1728, 2016, 2160, 2400, 2640, 2688, 3168, 3360, 3456, 3744, 4320, 4368, 4480, 5040, 5280, 5760, 6336, 6720, 7200, 7488, 8640, 8736, 8800, 9408, 10080, 10560, 10800, 11520, 12096, 12480
Offset: 1

Views

Author

Michel Marcus, Oct 30 2012

Keywords

Comments

All terms are even. The sequence is infinite. E.g., positive terms of A173121 {48, 288, 960, 2400, 5040, 9408, 16128, 25920, 39600,...} is infinite subsequence of A218486. - Zak Seidov, Nov 26 2013
Another infinite subsequence is {96, 480, 1440, 3360, 6720, 12096, 20160, ...} = 96 *binomial(m,4) = 96*(positive terms in A000332). - Zak Seidov, Nov 26 2013

Examples

			48 = 7^2 - 1^2 = 8^2 - 4^2.
		

Crossrefs

Programs

  • PARI
    sq2(n) = {for (i=1, n, a = sqrtint(i) + 1; if (issquare(a^2-i) && issquare((a+1)^2-i), print1(i, ", ")););}

A173175 a(n) = sinh^2( 2n*arcsinh(sqrt n)).

Original entry on oeis.org

0, 8, 2400, 1825200, 2687489280, 6503780163000, 23436548406180000, 117725514040791821024, 786292024016459316676608, 6739465778247681589030301160, 72110357818535214970387726284000, 942092946853627620313318842336862608, 14758709413836719039368938494112056160000
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Crossrefs

Programs

  • Maple
    A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
  • PARI
    {a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
    
  • PARI
    {a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019

Formula

From Seiichi Manyama, Jan 02 2019: (Start)
a(n) = A322699(n,2*n).
a(n) = (T_{2*n}(2*n+1) - 1)/2 where T_{n}(x) is a Chebyshev polynomial of the first kind.
a(n) = 1/2 * (-1 + Sum_{k=0..2*n} binomial(4*n,2*k)*(n+1)^(2*n-k)*n^k). (End)
a(n) ~ exp(1) * 2^(4*n - 2) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019

Extensions

a(11)-a(12) from Seiichi Manyama, Jan 02 2019

A173194 a(n) = -sin^2 (2*n*arccos n) = - sin^2 (2*n*arcsin n).

Original entry on oeis.org

0, 0, 9408, 384199200, 54471499791360, 20405558846592060000, 16793517249722147195701440, 26730228454204365035835498694848, 75019085697452515216001640927169855488, 346154755746154620929434271983392498083891520
Offset: 0

Views

Author

Artur Jasinski, Feb 12 2010

Keywords

Crossrefs

Programs

  • Maple
    A173194 := proc(n) ((n+sqrt(n^2-1))^(2*n)-(n-sqrt(n^2-1))^(2*n))^2 ; expand(%/4) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Round[Table[ -N[Sin[2 n ArcSin[n]], 100]^2, {n, 0, 15}]] (* Artur Jasinski *)
    Table[FullSimplify[(-1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x))^2], {x, 0, 7}] (* Artur Jasinski, Feb 17 2010 *)
    Table[(n^2-1)*ChebyshevU[2*n-1, n]^2, {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    {a(n) = (n^2-1)*n^2*(sum(k=0, n-1, binomial(2*n, 2*k+1)*(n^2-1)^(n-1-k)*n^(2*k)))^2} \\ Seiichi Manyama, Jan 05 2019
    
  • PARI
    {a(n) = (n^2-1)*polchebyshev(2*n-1, 2, n)^2} \\ Seiichi Manyama, Jan 05 2019

Formula

4*a(n) = ( (n+sqrt(n^2-1))^(2*n) - (n-sqrt(n^2-1))^(2*n) )^2. - Artur Jasinski, Feb 17 2010
From Seiichi Manyama, Jan 05 2019: (Start)
a(n) = (n^2-1) * n^2 * (Sum_{k=0..n-1} binomial(2*n,2*k+1)*(n^2-1)^(n-1-k)*n^(2*k))^2.
For n > 0, a(n) = (n^2-1) * U_{2*n-1}(n)^2 where U_{n}(x) is a Chebyshev polynomial of the second kind. (End)
a(n) ~ 2^(4*n - 2) * n^(4*n). - Vaclav Kotesovec, Jan 05 2019

Extensions

a(9) from Seiichi Manyama, Jan 05 2019

A173150 a(n) = sinh^2 (2n*arccosh(sqrt n)).

Original entry on oeis.org

0, 0, 288, 235224, 354079488, 865363202000, 3134808545188320, 15796198853361763368, 105717380511014096025600, 907380314352243226001152800, 9718304978537581699085289156000
Offset: 0

Views

Author

Artur Jasinski, Feb 11 2010

Keywords

Comments

Also a(n) = -sin(2n*arccos(sqrt(n)))^2 = -sin(2n*arcsin(sqrt(n)))^2.

Crossrefs

Programs

  • Maple
    A173150 := proc(n) sinh(2*n*arccosh(sqrt(n))) ; %^2 ; expand(%) ; simplify(%) ;end proc: # R. J. Mathar, Feb 26 2011
  • Mathematica
    Table[Round[-Sin[2 n ArcCos[Sqrt[n]]]^2], {n, 0, 20}] (* Artur Jasinski, Feb 11 2010 *)

Extensions

Minor edits by Vaclav Kotesovec, Apr 05 2016
Previous Showing 11-20 of 20 results.