cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A050286 Starting position of the first occurrence of a string of at least n '7's in the decimal expansion of Pi.

Original entry on oeis.org

13, 559, 1589, 1589, 162248, 399579, 3346228, 24658601, 24658601, 22869046249, 165431035708, 368299898266, 10541103245815, 14793486898235, 46970519777308
Offset: 1

Views

Author

Keywords

Comments

a(10) > 2*10^9 according to the SubIdiom.com/pi search engine. - M. F. Hasler, Apr 13 2019
a(11) > 99*10^9. - Giovanni Resta, Oct 02 2019
a(15) > 22*10^12. - Dmitry Petukhov, Jan 27 2020
a(16) > 50*10^12. - Dmitry Petukhov, Oct 30 2021

Crossrefs

Cf. A000796: Decimal expansion (or digits) of Pi.
First occurrence of n times the same digit: A035117 (n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
First occurrence of exactly n times the same digit: A096755 (exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
Cf. A176341 (first occurrence of n).
Cf. A121280 = A068987 - 1 (first occurrence of concatenate(1,...,n)).

Formula

a(n) = min { A096761(k); k >= n }. - M. F. Hasler, Mar 19 2017

Extensions

Edited by M. F. Hasler, Mar 19 2017
a(10) from Giovanni Resta, Oct 02 2019
a(11)-a(13) added by Dmitry Petukhov, Jan 13 2020
a(14) from Dmitry Petukhov, Jan 27 2020
a(15) from Dmitry Petukhov, Oct 30 2021

A053746 Positions of '2's in the decimal expansion of Pi, where positions 1, 2, 3, ... correspond to digits 3, 1, 4, ...

Original entry on oeis.org

7, 17, 22, 29, 34, 54, 64, 74, 77, 84, 90, 94, 103, 113, 115, 136, 137, 141, 150, 161, 166, 174, 186, 187, 204, 222, 230, 242, 245, 261, 276, 281, 290, 293, 299, 303, 327, 330, 334, 336, 338, 355, 375, 381, 407
Offset: 1

Views

Author

Simon Plouffe, Feb 20 2000

Keywords

Comments

See A037001 for the variant where digits 3, 1, 4, ... correspond to positions 0, 1, 2, ... - M. F. Hasler, Jul 28 2024

Examples

			Pi = 3.1415926... where the first '2' occurs as the 7th digit.
		

Crossrefs

Cf. A000796 (decimal expansion (or digits) of Pi).
Cf. A037001 (= a(n) - 1: the same with different offset).
Cf. A053745 - A053753 (similar for digits 1 through 9).
Cf. A035117 (first occurrence of at least n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
Cf. A096755 (first occurrence of exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
Cf. A121280 = A068987 - 1: position of "123...n" in Pi's decimals.
Cf. A176341: first occurrence of n in Pi's digits.
Cf. A088566 (primes in this sequence).

Programs

  • Mathematica
    Flatten[Position[RealDigits[Pi, 10, 1000][[1]], 2]] (* Vincenzo Librandi, Oct 07 2013 *)
  • PARI
    A053746_upto(N=999)={localprec(N+20); select(d->d==2, digits(Pi\10^-N), 1)} \\ M. F. Hasler, Jul 28 2024

Formula

a(n) = A037001(n) + 1. - Georg Fischer, May 31 2021

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Oct 07 2013

A232014 Number of iterations of A032445 ("position of n in Pi") until a value is reached for the second time, when starting with n, or -1 if no value is repeated.

Original entry on oeis.org

16, 4, 3, 5, 6, 1
Offset: 0

Views

Author

M. F. Hasler, Nov 16 2013

Keywords

Comments

See A232013 for a variant based on A176341 instead of A032445.
Some loops: (5), (271070), (9292071), (40, 71), (2, 7, 14), (296, 1060, 13737, 133453, 646539, 294342, 141273). - Hans Havermann, Jul 26 2014
See Hans Havermann table (in links) for primary unknown-length evolutions. - Hans Havermann, Aug 06 2014

Examples

			a(1)=4 since A032445(1)=2 (the first "1" occurs after the initial "3" as second digit in Pi), A032445(2)=7 (the first "2" occurs as 7th digit of Pi's decimal expansion), A032445(7)=14, A032445(14)=2, which "closes the loop" after 4 iterations. (The initial value does not need to be part of the loop.)
		

Crossrefs

Cf. A032445.

Programs

  • PARI
    A232014(n)={my(u=0);for(i=1,9e9,u+=1<A032445(n))&&return(i))}

Extensions

Definition modified by N. J. A. Sloane, Jul 29 2014

A193940 Starting position of the first occurrence of the decimal number 10^n in the decimal expansion of Pi.

Original entry on oeis.org

1, 49, 854, 854, 387791, 2393355, 10359802, 13310435, 172330849, 2542542101, 95257866194, 1587461837108, 3186699229889, 3186699229889
Offset: 0

Views

Author

Kausthub Gudipati, Aug 10 2011

Keywords

Comments

From Dmitry Petukhov, Jan 15 2020: (Start)
Digits 3,1,4,1,5,... are indexed 0,1,2,3,4,...
10^2 without '0' after it found at 1816 position, but a(3)=854 < 1816, therefore a(2)=a(3)=854.
10^12 without '0' after it found at 6029081077667 position, but a(13)=3186699229889 < 6029081077667, therefore a(12)=a(13). (End)

Examples

			Pi = 3.141592653589793238462643383279502884197169399375105.. The '1' (10^0) after the decimal point is at position 1. The '1' of the first occurrence of '10' (10^1) is at position 49.
		

Crossrefs

Programs

  • Mathematica
    str = ToString[N[Pi-3, 2*10^8]]; s = "1"; Table[pos = StringPosition[str, s, 1][[1,1]] - 2; s = s <> "0"; pos, {9}] (* this code takes a long time. T. D. Noe, Aug 10 2011 *)

Extensions

Edited by Hans Havermann, Jul 21 2014
a(9) from Hans Havermann, Jul 21 2014
a(10)-a(13) from Dmitry Petukhov, Jan 15 2020

A194351 Starting position of the first occurrence of a string of 2^n in the decimal expansion of Pi.

Original entry on oeis.org

1, 6, 2, 11, 40, 15, 22, 148, 1750, 1842, 12735, 26862, 27372, 2943, 37619, 39587, 106920, 820238, 76875, 47887, 6150809, 3660438, 17376657, 15416321, 162454456, 132295965, 265234498, 33844308, 4847933000, 671531549, 1122335995, 2894348872, 763748417
Offset: 0

Views

Author

Kausthub Gudipati, Aug 22 2011

Keywords

Comments

a(46) > 50*10^12. - _Dmitry Petukhov, Oct 27 2021

Examples

			Pi = 3.141592653589793238462643383279502884197169399375105.. The '1' (2^0) after the decimal point is at position 1. The '1' of the first occurrence of '16' (2^4) is at position 40.
		

Crossrefs

Programs

  • Mathematica
    d = ToString[N[Pi-3, 1000000]]; Table[pos = StringPosition[d, ToString[2^n], 1]; If[pos == {}, Print["not enough digits for ", 2^n]; pos = 0, pos = pos[[1, 1]] - 2], {n, 0, 19}] (* T. D. Noe, Sep 02 2011 *)

Formula

a(n) = A032445(2^n)-1. - R. J. Mathar, Sep 02 2011

Extensions

Terms corrected by D. S. McNeil, Sep 02 2011
a(29), a(32) from D. S. McNeil, Sep 03 2011
Edited by Hans Havermann, Jul 22 2014
a(28), a(30)-a(31) from Hans Havermann, Jul 22 2014
a(33)-a(43), a(45) from Dmitry Petukhov, Jan 27 2020
a(44) from Dmitry Petukhov, Oct 27 2021

A280532 a(1) = a(2) = 1, a(n) = A014777(a(n-1) + a(n-2)), n >= 3.

Original entry on oeis.org

1, 1, 6, 13, 37, 31, 605, 1411, 7174, 15567, 608953, 78903, 334535, 611552, 105928, 2557047, 2979162, 3263358, 6242520, 7825254, 37404834, 267494881, 639174488
Offset: 1

Views

Author

Anders Hellström, Jan 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{a = {1, 1}, s = First@ RealDigits[N[Pi, 10^7]]}, Do[AppendTo[a, -1 + SequencePosition[s, IntegerDigits[ a[[n - 1]] + a[[n - 2]] ]][[1, 1]]], {n, 3, 20}]; a] (* Michael De Vlieger, Jan 14 2017 *)

A281092 Position of the first occurrence of n in the decimal expansion of e.

Original entry on oeis.org

13, 2, 0, 17, 10, 11, 20, 1, 3, 12, 195, 200, 370, 27, 223, 201, 94, 88, 2, 108, 111, 87, 252, 16, 33, 92, 30, 0, 4, 131, 71, 189, 110, 142, 143, 17, 19, 270, 85, 106, 66, 124, 97, 134, 239, 10, 103, 25, 228, 34, 235, 93, 15, 18, 76, 301, 153, 38, 325, 11, 20, 242, 32
Offset: 0

Views

Author

Bobby Jacobs, Jan 21 2017

Keywords

Comments

The 2 before the decimal point is counted as position 0.
This differs from A078197(n) at n = 2, 27, 271, 2718, ... .

Crossrefs

Programs

  • Mathematica
    With[{ed=RealDigits[E,10,500][[1]]},Flatten[Table[SequencePosition[ ed, IntegerDigits[n],1][[All,1]],{n,0,65}]]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 06 2017 *)

A332084 Triangle read by rows: T(n,k) is the smallest m >= 0 such that floor(Pi*n^m) == k (mod n), -1 if one does not exist, k = 0..n-1.

Original entry on oeis.org

0, 1, 0, 0, 2, 4, 1, 3, 2, 0, 1, 7, 3, 0, 8, 1, 9, 14, 0, 10, 2, 1, 7, 10, 0, 8, 6, 2, 3, 1, 8, 0, 9, 6, 14, 5, 10, 1, 2, 0, 3, 20, 18, 11, 5, 32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 5, 1, 8, 0, 13, 4, 2, 6, 9, 24, 12, 5, 1, 22, 0, 3, 17, 14, 18, 2, 6, 20, 10, 5, 1, 10, 0, 6, 9, 17, 14, 23, 7, 2, 21, 3
Offset: 1

Views

Author

Davis Smith, Aug 22 2020

Keywords

Comments

Pi is normal in base n >= 2 if and only if in every row N, such that N is a power of n, -1 does not appear. Pi is absolutely normal if and only if -1 never appears.
Conjecture: Pi is absolutely normal, meaning that -1 will never appear.
This triangle is an instance of the more general f(n,k,r), where f(n,k,r) is the smallest m >= 0 such that floor(r*n^m) == k (mod n) (-1 if one does not exist) and r is irrational. The same conditions for normalcy apply.

Examples

			The triangle T(n,k) starts:
n\k   0   1   2   3   4   5   6   7   8   9  10  11  12 ...
1:    0
2:    1   0
3:    0   2   4
4:    1   3   2   0
5:    1   7   3   0   8
6:    1   9  14   0  10   2
7:    1   7  10   0   8   6   2
8:    3   1   8   0   9   6  14   5
9:   10   1   2   0   3  20  18  11   5
10:  32   1   6   0   2   4   7  13  11   5
11:   5   1  22   0  13   4   2   6   9  24  12
12:   5   1  10   0   3  17  14  18   2   6  20  10
13:   5   1  10   0   6   9  17  14  23   7   2  21   3
		

Crossrefs

Positions of 0 through 9 in base 10: A037000, A037001, A037002, A037003, A037004, A037005, A036974, A037006, A037007, A037008.

Programs

  • PARI
    A332084_row(n)={my(L=List(vector(n,z,-1)), m=-1); while(vecmin(Vec(L))==-1, my(Z=lift(Mod(floor(Pi*n^(m++)),n))+1); if(L[Z]<0,listput(L,m,Z))); Vec(L)}

Formula

T(n,3) = 0, n > 3.

A362058 The location of the first occurrence of n in the decimal expansion of phi (the golden ratio, 1.6180339887...).

Original entry on oeis.org

4, 0, 19, 5, 11, 22, 1, 10, 3, 7, 231, 34, 121, 55, 254, 366, 0, 35, 2, 188, 19, 54, 62, 131, 78, 213, 67, 63, 51, 174, 40, 137, 181, 5, 26, 56, 28, 98, 32, 6, 105, 90, 347, 27, 58, 21, 70, 102, 15, 11, 214, 394, 66, 111, 57, 768, 30, 48, 22, 166, 68, 1, 50
Offset: 0

Views

Author

James C. McMahon, Apr 06 2023

Keywords

Comments

Locations in the expansion of phi are numbered 0 for the digit before the decimal point, 1 for the first digit after the decimal point, and so on.

Examples

			The first occurrence of 0 in phi occurs 4 places after the decimal point, so a(0)=4; 5 first occurs 22 places after the decimal point, so a(5)=22; 10 first occurs 231 places after the decimal point so a(10)=231.
		

Crossrefs

Cf. A001622 (phi)
Cf. A088577 (1-based locations).
Cf. A078197 (for e), A176341 (for Pi), A014777 (for Pi but different indexing).

Programs

  • Mathematica
    Table[-1 + SequencePosition[#, IntegerDigits@ n][[1, 1]], {n, 0, 50}] &@ First@ RealDigits@ N[GoldenRatio, 10^4]

Formula

a(n) = A088577(n) - 1.
Previous Showing 11-19 of 19 results.