cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A319240 Positions of zeros in A316441, the list of coefficients in the expansion of Product_{n > 1} 1/(1 + 1/n^s).

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Dec 31 2021: (Start)
Numbers that have an equal number of even and odd-length unordered factorizations.
There are infinitely many terms since p^2 is a term for prime p.
Out of all numbers of the form p^k with p prime (listed in A000961), only the numbers of the form p^2 (A001248) are terms.
Out of all numbers of the form p*q^k, p and q prime, only the numbers of the form p*q (A006881), p*q^2 (A054753), p*q^4 (A178739) and p*q^6 (A189987) are terms.
Similar methods can be applied to all prime signatures. (End)

Examples

			12 = 2*6 = 3*4 = 2*2*3 has an equal number of even-length factorizations and odd-length factorizations (2). - _Tian Vlasic_, Dec 09 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,100}],0]

A215197 Numbers k such that k and k + 1 are both of the form p*q^4 where p and q are distinct primes.

Original entry on oeis.org

2511, 7856, 10287, 15471, 15632, 18063, 20816, 28592, 36368, 40816, 54512, 75248, 88047, 93231, 101168, 126927, 134703, 160624, 163376, 170991, 178767, 210032, 215216, 217808, 220624, 254096, 256527, 274671, 280624, 292976, 334448, 347408, 443151, 482192
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

The smaller of adjacent terms in A178739. - R. J. Mathar, Aug 08 2012
These are numbers n such that n and n+1 both have 10 divisors. Proof: clearly n and n+1 cannot both be of the form p^9, so for contradiction assume either n and n+1 is of the form p*q^4 and the other is of the form r^9 where p, q, and r are prime. So p*q^4 is either r^9 - 1 = (r-1)(r^2+r+1)(r^6+r^3+1) or r^9 + 1 = (r+1)(r^2-r+1)(r^6-r^3+1). But these factors are relatively prime and so cannot represent p*q^4 unless one or more factors are units. But this does not happen for r > 2, and the case r = 2 does not work since neither 511 not 513 is of the form p*q^4. - Charles R Greathouse IV, Jun 19 2016

Examples

			2511 is a member as 2511 = 31*3^4 and 2512 = 157*2^4.
		

Crossrefs

Intersection of A005237 and A030628.

Programs

  • Maple
    with(numtheory):for n from 3 to 500000 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^4 : xx2:=x[2]*x[1]^4:yy1:=y[1]*y[2]^4: yy2:=y[2]*y[1]^4:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 4}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 4}, AppendTo[lst, n]]], {n, 3, 55000}]; lst
    (* First run program for A178739 *) Select[A178739, MemberQ[A178739, # + 1] &] (* Alonso del Arte, Aug 05 2012 *)
  • PARI
    is(n)=numdiv(n)==10 && numdiv(n+1)==10 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    is(n)=vecsort(factor(n)[,2])==[1,4]~ && vecsort(factor(n+1)[,2])==[1,4]~ \\ Charles R Greathouse IV, Jun 19 2016

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021

A336595 Numbers whose number of divisors is divisible by 5.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is 1 - zeta(5)/zeta(4) = 0.0419426259... (Sathe, 1945).

Examples

			16 is a term since A000005(16) = 5 is divisible by 5.
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 63.

Crossrefs

Programs

  • Maple
    q:= n-> is(irem(numtheory[tau](n), 5)=0):
    select(q, [$1..1300])[];  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    Select[Range[1300], Divisible[DivisorSigma[0, #], 5] &]

Formula

A030514 UNION A030628 \ {1} UNION A030633 UNION A030638 UNION A137488 UNION A137493 UNION A175745 UNION A175749 UNION A175752 UNION A175756 UNION ... - R. J. Mathar, May 05 2023

A360902 Numbers with the same number of squarefree divisors and powerful divisors.

Original entry on oeis.org

1, 4, 9, 25, 36, 48, 49, 80, 100, 112, 121, 162, 169, 176, 196, 208, 225, 272, 289, 304, 361, 368, 405, 441, 464, 484, 496, 529, 567, 592, 656, 676, 688, 720, 752, 841, 848, 891, 900, 944, 961, 976, 1008, 1053, 1072, 1089, 1136, 1156, 1168, 1200, 1225, 1250, 1264
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2023

Keywords

Comments

Numbers k such that A034444(k) = A005361(k).
Numbers whose squarefree kernel (A007947) and powerful part (A057521) have the same number of divisors (A000005).
If k and m are coprime terms, then k*m is also a term.
All the terms are exponentially 2^n-numbers (A138302).
The characteristic function of this sequence depends only on prime signature.
Numbers whose canonical prime factorization has exponents whose geometric mean is 2.
Equivalently, numbers of the form Product_{i=1..m} p_i^(2^k_i), where p_i are distinct primes, and Sum_{i=1..m} k_i = m (i.e., the exponents k_i have an arithmetic mean 1).
1 is the only squarefree (A005117) term.
Includes the squares of squarefree numbers (A062503), which are the powerful (A001694) terms of this sequence.
The squares of primes (A001248) are the only terms that are prime powers (A246655).
Numbers of the for m*p^(2^k), where m is squarefree, p is prime, gcd(m, p) = 1 and omega(m) = k - 1, are all terms. In particular, this sequence includes numbers of the form p^4*q, where p != q are primes (A178739), and numbers of the form p^8*q*r where p, q, and r are distinct primes (A179747).
The corresponding numbers of squarefree (or powerful) divisors are 1, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, ... . The least term with 2^k squarefree divisors is A360903(k).

Examples

			4 is a term since it has 2 squarefree divisors (1 and 2) and 2 powerful divisors (1 and 4).
36 is a term since it has 4 squarefree divisors (1, 2, 3 and 6) and 4 powerful divisors (1, 4, 9 and 36).
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Times @@ e == 2^Length[e]]; q[1] = True; Select[Range[1300], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); prod(i = 1, #e, e[i]) == 2^#e; }

A336530 Number of triples of divisors d_i < d_j < d_k of n such that gcd(d_i, d_j, d_k) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 4, 0, 5, 0, 5, 0, 0, 0, 23, 0, 0, 1, 5, 0, 12, 0, 10, 0, 0, 0, 36, 0, 0, 0, 23, 0, 12, 0, 5, 5, 0, 0, 62, 0, 5, 0, 5, 0, 23, 0, 23, 0, 0, 0, 87, 0, 0, 5, 20, 0, 12, 0, 5, 0, 12, 0, 120, 0, 0, 5, 5, 0, 12, 0, 62, 4
Offset: 1

Views

Author

Michel Lagneau, Oct 04 2020

Keywords

Comments

Number of elements in the set {(x, y, z): x|n, y|n, z|n, x < y < z, GCD(x, y, z) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ... (Numbers with at most 2 prime factors (counted with multiplicity). See A037143);
a(n) = 1 for n = 8, 27, 125, 343, 1331, 2197, 4913,... (cubes of primes. See A030078);
a(n) = 4 for n = 16, 81, 625, 2401, 14641, 28561, ... (prime(n)^4. See A030514);
a(n) = 5 for n = 12, 18, 20, 28, 44, 45, ... (Numbers which are the product of a prime and the square of a different prime (p^2 * q). See A054753);
a(n) = 12 for n = 30, 42, 66, 70, 78, 102, 105, 110,... (Sphenic numbers: products of 3 distinct primes. See A007304);
a(n) = 20 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516);
a(n) = 23 for n = 24, 40, 54, 56, 88, 104, 135, 136, ... (Product of the cube of a prime (A030078) and a different prime. See A065036);
a(n) = 36 for n = 36, 100, 196, 225, 441, 484, 676,... (Squares of the squarefree semiprimes (p^2*q^2). See A085986);
a(n) = 62 for n = 48, 80, 112, 162, 176, 208, 272, ... (Product of the 4th power of a prime (A030514) and a different prime (p^4*q). See A178739);
a(n) = 87 for n = 60, 84, 90, 126, 132, 140, 150, 156, ... (Product of exactly four primes, three of which are distinct (p^2*q*r). See A085987);
a(n) = 120 for n = 72, 108, 200, 392, 500, 675, 968, ... (Numbers of the form p^2*q^3, where p,q are distinct primes. See A143610);
It is possible to continue with a(n) = 130, 235, 284, 289, 356, ...

Examples

			a(12) = 5 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j, d_k) > 1 for the 5 following triples of divisors: (2,4,6), (2,4,12), (2,6,12), (3,6,12) and (4,6,12).
		

Crossrefs

Cf. A275387.

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):n0:=nops(d):
      for i from 1 to n0-2 do:
       for j from i+1 to n0-1 do:
         for k from j+1 to n0 do:
        if igcd(d[i],d[j],d[k])> 1
           then
           it:=it+1:
           else
          fi:
         od:
         od:
         od:
        printf(`%d, `,it):
       od:
  • Mathematica
    Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {3}], ?(# > 1 &)] &, 81] (* _Michael De Vlieger, Oct 05 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, #d-2, sum (j=i+1, #d-1, sum (k=j+1, #d, gcd([d[i], d[j], d[k]]) > 1))); \\ Michel Marcus, Oct 31 2020
    
  • PARI
    a(n) = {my(f = factor(n), vp = vecprod(f[,1]), d = divisors(vp), res = 0);
    for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 3)*(-1)^omega(d[i])); res} \\ David A. Corneth, Nov 01 2020

Extensions

Name clarified by editors, Oct 31 2020

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A353423 For even n, a(n) = -Sum_{d|n, dA064989(n)), with a(1) = 1.

Original entry on oeis.org

1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -2, -1, -1, -1, 0, -1, 0, -1, -2, -1, -1, -1, -8, 0, -1, 0, -2, -1, -5, -1, 0, -1, -1, -1, 0, -1, -1, -1, -8, -1, -5, -1, -2, -2, -1, -1, -96, 0, 0, -1, -2, -1, 0, -1, -8, -1, -1, -1, -70, -1, -1, -2, 0, -1, -5, -1, -2, -1, -5, -1, 0, -1, -1, 0, -2, -1, -5, -1, -96, 0, -1, -1, -70
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2022

Keywords

Comments

Apparently, for all i, j >= 1, A077462(i) = A077462(j) => a(i) = a(j).

Crossrefs

Cf. A070003 (positions of 0's), A167171 (positions of -1's), A096156 (positions of -2's), A007304 (positions of -5's), A086975 (positions of -70's), all these are so far conjectural. Also a subsequence of A178739 seems to give the positions of -96's.
Cf. also A353454, A353457, A353458, A353467 for similar recurrences.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    memoA353423 = Map();
    A353423(n) = if(1==n,1,my(v); if(mapisdefined(memoA353423,n,&v), v, if(!(n%2), v = -sumdiv(n,d,if(dA353423(n/2)*A353423(d),0)), v = A353423(A064989(n))); mapput(memoA353423,n,v); (v)));

Formula

a(p) = -1 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.

A375934 Numbers whose prime factorization has a second-largest exponent that equals 1.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

First differs from A332785 at n = 112: A332785(112) = 360 = 2^3 * 3^2 * 5 is not a term of this sequence.
First differs from A317616 at n = 38: A317616(38) = 144 = 2*4 * 3^2 is not a term of this sequence.
Numbers k such that A375933(k) = 1.
Numbers of the form s1 * s2^e, where s1 and s2 are coprime squarefree numbers that are both larger than 1, and e >= 2.
The asymptotic density of this sequence is Sum_{e>=2} d(e) = 0.36113984820338109927..., where d(e) = Product_{p prime} (1 - 1/p^2 + 1/p^e - 1/p^(e+1)) - Product_{p prime} (1 - 1/p^(e+1)) is the asymptotic density of terms k with A051903(k) = e >= 2.

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, # < Max[e] &]]] == 1]; Select[Range[300], q]
  • PARI
    is(n) = if(n == 1, 0, my(e = factor(n)[,2]); e = select(x -> x < vecmax(e), e); if(#e == 0, 0, vecmax(e) == 1));

Formula

A051904(a(n)) = 1.
A051903(a(n)) >= 2.
A001221(a(n)) = 2.
Previous Showing 21-30 of 37 results. Next