cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A271971 Decimal expansion of (6/Pi^2) Sum_{p prime} 1/(p(p+1)), a Meissel-Mertens constant related to the asymptotic density of certain sequences of integers.

Original entry on oeis.org

2, 0, 0, 7, 5, 5, 7, 2, 2, 0, 1, 9, 2, 6, 5, 9, 8, 6, 9, 9, 6, 2, 5, 0, 7, 2, 3, 1, 1, 4, 4, 0, 4, 7, 6, 5, 8, 5, 3, 5, 3, 5, 5, 5, 5, 3, 5, 2, 5, 6, 1, 9, 1, 6, 1, 5, 9, 7, 6, 3, 2, 9, 8, 3, 6, 5, 2, 5, 4, 0, 7, 4, 7, 4, 7, 9, 6, 4, 9, 7, 9, 1, 2, 1, 1, 9, 0, 9, 4, 2, 6, 8, 4, 5, 0, 3, 5, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Comments

This is the density of A060687, the numbers with one 2 and the rest 1s in the exponents of its prime factorization. - Charles R Greathouse IV, Aug 03 2016

Examples

			0.200755722019265986996250723114404765853535555352561916...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens Constants, p. 95.

Crossrefs

Programs

  • Mathematica
    digits = 100; S = (6/Pi^2)*NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[ S, 10, digits] // First
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2, (-1)^k*primezeta(k))*6/Pi^2 \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1)))/zeta(2) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (6/Pi^2)*A179119.

A048107 Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers with at most one 2 and no 3s or higher in their prime exponents. - Charles R Greathouse IV, Aug 25 2016
A disjoint union of A005117 and A060687. The asymptotic density of this sequence is (6/Pi^2) * (1 + Sum_{p prime} 1/(p*(p+1))) = A059956 * (1 + A179119) = A059956 + A271971 = 0.8086828238... - Amiram Eldar, Nov 07 2020

Examples

			n = 420 = 2*2*3*5*7, 4 distinct prime factors, 24 divisors of which 16 are unitary and 8 are not; ud(n) > nud(n) and 2^(4+1) = 32 is larger than d, the number of divisors.
		

Crossrefs

Complement of A048108.
A072357 is a subsequence.

Programs

  • Mathematica
    Select[Range[500], 2^(1 + PrimeNu[#]) > DivisorSigma[0, #] &] (* G. C. Greubel, May 05 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>2, return(0), t=1))); 1 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)=n==1 || factorback(factor(n)[,2])<3 \\ Charles R Greathouse IV, Aug 25 2016

Formula

Numbers for which 2^(r(n)+1) > d(n), where r = A001221, d = A000005.

A028236 If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 7, 1, 9, 8, 1, 1, 11, 1, 9, 10, 13, 1, 11, 1, 15, 1, 11, 1, 31, 1, 1, 14, 19, 12, 13, 1, 21, 16, 13, 1, 41, 1, 15, 14, 25, 1, 19, 1, 27, 20, 17, 1, 29, 16, 15, 22, 31, 1, 47, 1, 33, 16, 1, 18, 61, 1, 21, 26, 59, 1, 17, 1, 39, 28, 23, 18, 71, 1, 21, 1, 43
Offset: 1

Views

Author

Keywords

Examples

			Fractions begin with 1, 1/2, 1/3, 1/4, 1/5, 5/6, 1/7, 1/8, 1/9, 7/10, 1/11, 7/12, ...
		

Crossrefs

Denominator is n (A000027).

Programs

  • Haskell
    a028236 n = sum $ map (div n) $ a141809_row n
    -- Reinhard Zumkeller, Nov 10 2013
  • Magma
    a028236:=func< k | k eq 1 select 1 else Numerator(&+[ f[i, 1]^-f[i,2]: i in [1..#f] ]) where f is Factorization(k) >; [ a028236(n):n in [1..82] ]; // Klaus Brockhaus, Nov 06 2010
    
  • Mathematica
    a[n_] := n * Total[1/Power @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Sep 29 2023 *)

Formula

Fraction is additive with a(p^e) = 1/p^e.
a(n) = Sum_{k=1..A001221(n)} n/A141809(n,k). - Reinhard Zumkeller, Nov 10 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/k = Sum_{p prime} 1/(p*(p+1)) = 0.330229... (A179119). - Amiram Eldar, Sep 29 2023

Extensions

More terms from Erich Friedman

A324833 Decimal expansion of eta_2, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

1, 2, 9, 0, 3, 8, 9, 2, 5, 8, 9, 7, 8, 0, 7, 5, 5, 6, 4, 9, 7, 4, 3, 4, 8, 6, 3, 4, 8, 1, 7, 7, 5, 8, 7, 7, 6, 3, 8, 4, 9, 3, 2, 1, 4, 1, 9, 9, 2, 0, 5, 6, 8, 8, 3, 0, 0, 4, 1, 2, 7, 0, 4, 5, 6, 3, 9, 8, 0, 6, 6, 5, 7, 3, 0, 9, 1, 7, 0, 3, 9, 8, 9, 9, 9, 7, 1, 6, 7, 7, 8, 3, 5, 9, 8, 1, 9, 3, 4, 3, 8
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.12903892589780755649743486348177587763849321419920568830041270456398...
		

Crossrefs

Cf. A154945 (eta_1), A324834 (eta_3), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 101; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta2 = Sum[n PrimeZetaP[2n + 2], {n, 1, m}], 10, digits][[1]]; rd[m0]; rd[m = 2m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta2, digits] ]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^2.
Sum_{n>0} n P(2n+2) where P is the prime zeta P function.
Equals - A136141/4 + A086242/4 - A179119/4 + A382554/4. - Artur Jasinski, Mar 31 2025

A324834 Decimal expansion of eta_3, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

0, 3, 9, 0, 7, 2, 4, 0, 5, 7, 3, 5, 5, 7, 4, 7, 9, 1, 8, 8, 7, 6, 5, 9, 5, 0, 3, 3, 2, 0, 4, 2, 2, 9, 7, 6, 3, 8, 6, 6, 8, 4, 8, 3, 8, 2, 4, 4, 7, 7, 3, 3, 6, 0, 3, 5, 6, 7, 5, 4, 0, 6, 6, 0, 3, 2, 6, 9, 1, 7, 5, 8, 3, 7, 6, 1, 9, 2, 4, 9, 2, 0, 2, 9, 8, 1, 7, 9, 1, 0, 0, 6, 9, 0, 7, 6, 8, 0, 0, 5, 6, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.03907240573557479188765950332042297638668483824477336035675406603269...
		

Crossrefs

Cf. A154945 (eta_1), A324833 (eta_2), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 102; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta3 = Sum[n (n+1)/2 PrimeZetaP[2 n + 4], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2 m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta3, digits]]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^3.
Sum_{n>0} (n(n+1)/2) P(2n+4) where P is the prime zeta P function.
Equals 3*A136141/16 - 3*A086242/16 + A380840/8 + 3*A179119/16 - 3*A382554/16 - A382555/8. - Artur Jasinski, Mar 31 2025

A036436 Numbers whose number of divisors is a square.

Original entry on oeis.org

1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 168, 177, 178, 183
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR (named after Hardy and Ramanujan) concept formation program.
Numbers in this sequence but not in A036455 are 1, 1260, 1440, 1800, 1980 etc. [From R. J. Mathar, Oct 20 2008]
tau(p^(n^2-1)) = n^2 so numbers of this form are in this sequence, and because tau is multiplicative: if a and b are in this sequence and (a,b)=1 then a*b is also in a(n). - Enrique Pérez Herrero, Jan 22 2013
What is the density of this sequence? It contains A030229 and thus has (lower) density at least 3/Pi^2 = 0.30396...; it does not contain any members of A030059 or A060687, and hence has (upper) density at most 1 - 3/Pi^2 - 6*A179119/Pi^2 = 0.49528.... - Charles R Greathouse IV, Jan 11 2025

Examples

			tau(6)=4, which is a square number, so 6 is in this sequence.
		

References

  • S. Colton, Automated Theorem Discovery: A Future Direction for Theorem Provers, 2002.

Crossrefs

Contains A030229 as a subsequence.

Programs

Extensions

Links corrected and edited by Daniel Forgues, Jun 30 2010

A068050 Number of values of k, 1<=k<=n, for which floor(n/k) is prime.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 2, 2, 4, 5, 3, 4, 5, 6, 5, 6, 5, 6, 6, 7, 9, 10, 6, 7, 9, 9, 9, 10, 10, 11, 9, 10, 12, 14, 11, 12, 13, 14, 13, 14, 13, 14, 14, 15, 17, 18, 13, 14, 16, 17, 18, 19, 17, 19, 18, 19, 21, 22, 18, 19, 20, 21, 19, 21, 22, 23, 23, 24, 26, 27, 21, 22, 23, 24, 24, 26, 27
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Examples

			a(10) = 4 as floor(10/k) for k = 1 to 10 is 10,5,3,2,2,1,1,1,1,1, respectively; this is prime for k = 2,3,4,5.
		

Crossrefs

Programs

  • Haskell
    a068050 n = length [k | k <- [1..n], a010051 (n `div` k) == 1]
    -- Reinhard Zumkeller, Jan 31 2012
    
  • Mathematica
    a[n_] := Length[Select[Table[Floor[n/i], {i, 1, n}], PrimeQ]]
    Table[Count[Table[Floor[n/k],{k,n}],?PrimeQ],{n,80}] (* _Harvey P. Dale, Nov 19 2022 *)
  • PARI
    a(n) = sum(k=1, n, isprime(n\k)); \\ Michel Marcus, Jun 03 2024

Formula

If p is a prime other than 3, a(p) = a(p-1) + 1. - Franklin T. Adams-Watters, Apr 27 2020
a(n) = A179119*n + O(n^(1/2)). - Randell Heyman, Oct 06 2022
a(n) = Sum_{p prime and p<=n} (floor(n/p) - floor(n/(p+1))). - Ridouane Oudra, Jun 03 2024

Extensions

Edited by Dean Hickerson, Feb 12 2002

A369632 Decimal expansion of Sum_{primes p} 1/(p*(p^2 - 1)).

Original entry on oeis.org

2, 2, 1, 4, 6, 3, 3, 7, 1, 3, 9, 2, 7, 9, 5, 9, 4, 3, 4, 2, 4, 6, 3, 6, 4, 3, 5, 8, 8, 4, 5, 9, 8, 8, 1, 7, 4, 8, 7, 2, 4, 0, 9, 5, 8, 3, 0, 4, 5, 5, 7, 7, 9, 6, 0, 8, 0, 3, 8, 8, 7, 3, 3, 2, 9, 7, 1, 4, 3, 4, 3, 0, 8, 4, 8, 1, 6, 2, 7, 2, 6, 7, 5, 6, 0, 4, 7, 7, 7, 5, 6, 5, 5, 0, 4, 2, 8, 5, 7, 6, 0, 3, 8, 7, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 28 2024

Keywords

Examples

			0.22146337139279594342463643588459881748724095830455...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[PrimeZetaP[2*k + 1], {k, 1, Infinity}, WorkingPrecision -> 100]][[1]] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    sumeulerrat(1/(p*(p^2-1))) \\ Amiram Eldar, Jan 28 2024

Formula

Equals Sum_{i>=1} 1/A127917(i) = (A136141 - A179119)/2.
Equals Sum_{k>=1} P(2*k+1), where P(s) is the prime zeta function. - Amiram Eldar, Jan 28 2024

Extensions

More terms from Amiram Eldar, Jan 28 2024

A185380 Decimal expansion of sum 1/(p*(p+2)) over the primes p.

Original entry on oeis.org

2, 6, 3, 6, 7, 2, 0, 6, 1, 7, 6, 1, 1, 5, 3, 1, 7, 8, 7, 4, 9, 8, 4, 2, 1, 8, 8, 2, 3, 3, 7, 7, 6, 7, 5, 3, 0, 8, 7, 4, 9, 6, 3, 1, 8, 3, 9, 6, 7, 5, 6, 8, 0, 2, 1, 2, 2, 2, 3, 8, 1, 2, 6, 8, 3, 2, 2, 4, 3, 8, 9, 8, 1, 6, 3, 2, 2, 9, 8, 2, 4, 9, 8, 3, 9, 2, 2, 6, 6, 1, 7, 5, 4, 5, 1, 8, 0, 9, 6, 4, 0, 0, 6, 9, 9, 4
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Comments

If we omit the first term 1/(2*4)=0.125 from the sum, 0.138672... remains, which is an upper limit of A209329 in the sense that we "fake" prime gaps of 2 here [which are actually larger on average].

Examples

			0.263672061761153178749842188233776 .. = 1/(2*4) +1/(3*5) + 1/(5*7) + 1/(7*9) + 1/(11*13)+ ...
		

Crossrefs

Cf. A136141 (1/(p(p-1))), A179119 (1/(p(p+1))).

Programs

  • Maple
    read("transforms") ;
    Digits := 300 ;
    # insert coding of ZetaM(s,M) and Hurw(a) from A179119 here...
    A185380 := proc()
            Hurw(2) ;
    end proc:
    A185380() ;
  • PARI
    sumeulerrat(1/(p*(p+2))) \\ Amiram Eldar, Mar 19 2021

Formula

Equals -1/8 + Sum_{k>=2} (-1)^k * 2^(k-2) * P(k), where P is the prime zeta function. - Vaclav Kotesovec, Jan 13 2021

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021

A307379 Decimal expansion of Sum_{n >= 1} 2/(k(n)*(k(n) + 1)), with k = A018252 (nonprime numbers).

Original entry on oeis.org

1, 3, 3, 9, 5, 4, 0, 1, 4, 7, 4, 7, 1, 5, 9, 3, 5, 1, 7, 9, 6, 9, 8, 1, 0, 8, 2, 3, 8, 2, 6, 5, 1, 0, 4, 7, 8, 7, 1, 1, 4, 8, 1, 1, 6, 1, 0, 5, 1, 8, 5, 9, 0, 8, 7, 6, 9, 9, 5, 4, 2, 7, 9, 8, 4, 7, 5, 1, 5, 5, 6, 6, 6, 4, 1, 4, 1, 8, 4, 1, 1, 1, 3, 5, 6, 5, 9
Offset: 1

Views

Author

Marco Ripà, Apr 06 2019

Keywords

Comments

We know that Sum_{n >= 1} 2/(n^2 + n) = 2 and Sum_{n >= 1} 2/(p(n)*(p(n) + 1)) = 2*A179119, where p = A000040. Therefore, the present decimal expansion 1/1 + 1/10 + 1/21 + 1/36 + ... = 2*(1 - A179119).

Examples

			1.3395401474715935179... = 2 - (1/3 + 1/(3*2) + 1/(5*3) + 1/(7*4) + 1/(11*6) + ...) = 2*(1 - A179119).
		

Crossrefs

Programs

  • Mathematica
    digits = 87;
    S = 2 - 2 NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5];
    RealDigits[S, 10, digits][[1]] (* Jean-François Alcover, Jun 20 2019 *) [From A179119]
  • PARI
    2*(1 - sumeulerrat(1/(p*(p+1)))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals 2*(1 - A179119) = 2*(1 - Sum_{n>=1} 1/(A000040(n)*A008864(n))).

Extensions

Edited by Wolfdieter Lang, Jul 10 2019
Previous Showing 11-20 of 58 results. Next