cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 129 results. Next

A318762 Number of permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
           numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n],{n,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))}  \\ Andrew Howroyd, Dec 17 2018

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
a(n) = A008480(A181821(n)).
a(n) = A112624(n) * A124794(n). - Max Alekseyev, Oct 15 2023
Sum_{m in row n of A215366} a(m) = A005651(n).
Sum_{m in row n of A215366} a(m) * A008480(m) = A000670(n).
Sum_{m in row n of A215366} a(m) * A008480(m) / A001222(m)! = A000110(n).

A325248 Heinz number of the omega-sequence of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 10, 6, 18, 2, 90, 2, 18, 18, 14, 2, 90, 2, 90, 18, 18, 2, 126, 6, 18, 10, 90, 2, 50, 2, 22, 18, 18, 18, 42, 2, 18, 18, 126, 2, 50, 2, 90, 90, 18, 2, 198, 6, 90, 18, 90, 2, 126, 18, 126, 18, 18, 2, 630, 2, 18, 90, 26, 18, 50, 2, 90, 18, 50
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with Heinz number 990, so a(180) = 990.
		

Crossrefs

Positions of squarefree terms are A325247.
Positions of normal numbers (A055932) are A325251.
First positions of each distinct term are A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n],{n,100}]

Formula

A001222(a(n)) = A323014(n).
A061395(a(n)) = A001222(n).
A304465(n) = A055396(a(n)/2).
A325249(n) = A056239(a(n)).
a(n!) = A325275(n).

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A382912 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   4:       {1,1} {1,2}
   8:     {1,1,1} {1,2,3}
   9:       {2,2} {1,1,2,2}
  12:     {1,1,2} {1,1,2,3}
  16:   {1,1,1,1} {1,2,3,4}
  18:     {1,2,2} {1,1,2,2,3}
  20:     {1,1,3} {1,1,1,2,3}
  24:   {1,1,1,2} {1,1,2,3,4}
  27:     {2,2,2} {1,1,2,2,3,3}
  28:     {1,1,4} {1,1,1,1,2,3}
  32: {1,1,1,1,1} {1,2,3,4,5}
  36:   {1,1,2,2} {1,1,2,2,3,4}
  40:   {1,1,1,3} {1,1,1,2,3,4}
  44:     {1,1,5} {1,1,1,1,1,2,3}
  45:     {2,2,3} {1,1,1,2,2,3,3}
  48: {1,1,1,1,2} {1,1,2,3,4,5}
  50:     {1,3,3} {1,1,1,2,2,2,3}
  52:     {1,1,6} {1,1,1,1,1,1,2,3}
		

Crossrefs

The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293.
For prime indices instead of signature we have A351295, conjugate A381433.
The complement is A382913.
For equal instead of distinct run-lengths we have A382914, see A382858, A382879, A382915.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A381431 lists the section-sum partition of n, ranks A381436, union A381432.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{}, Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],Not@*lasQ@*nrmptn]

A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   1:    {} {}
   2:   {1} {1}
   3:   {2} {1,1}
   5:   {3} {1,1,1}
   6: {1,2} {1,1,2}
   7:   {4} {1,1,1,1}
  10: {1,3} {1,1,1,2}
  11:   {5} {1,1,1,1,1}
  13:   {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,2}
  15: {2,3} {1,1,1,2,2}
  17:   {7} {1,1,1,1,1,1,1}
  19:   {8} {1,1,1,1,1,1,1,1}
  21: {2,4} {1,1,1,1,2,2}
  22: {1,5} {1,1,1,1,1,2}
  23:   {9} {1,1,1,1,1,1,1,1,1}
  25: {3,3} {1,1,1,2,2,2}
  26: {1,6} {1,1,1,1,1,1,2}
		

Crossrefs

Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293, ranks A351295.
For prime indices instead of signature we have A351294, conjugate A381432.
The Look-and-Say partition of n is listed by A381440, rank A048767.
The complement is A382912.
For equal run-lengths we have the complement of A382914, see A382858, A382879, A382915.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A381431 ranks section-sum partition, listed by A381436.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],lasQ@*nrmptn]

A316652 Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 69, 623, 7793, 110430, 1906317, 36833614, 816101825, 19925210834, 541363267613, 15997458049946, 515769374925576, 17905023985615254, 669030297769291562, 26689471638523499483, 1134895275721374771655, 51161002326406795249910, 2440166138715867838359915
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 9 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,4}]
  • PARI
    \\ See A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 04 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 04 2021

A382771 Number of ways to permute the prime indices of n so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2025

Keywords

Comments

The first x with a(x) > 0 but A382857(x) > 1 is a(216) = 4, A382857(216) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The a(96) = 4 permutations are:
  (1,1,1,1,1,2)
  (1,1,1,2,1,1)
  (1,1,2,1,1,1)
  (2,1,1,1,1,1)
The a(216) = 4 permutations are:
  (1,1,2,2,2,1)
  (1,2,2,2,1,1)
  (2,1,1,1,2,2)
  (2,2,1,1,1,2)
The a(360) = 6 permutations are:
  (1,1,1,2,2,3)
  (1,1,1,3,2,2)
  (2,2,1,1,1,3)
  (2,2,3,1,1,1)
  (3,1,1,1,2,2)
  (3,2,2,1,1,1)
		

Crossrefs

Positions of 1 are A000961.
Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433, equal A382879.
Sorted positions of first appearances are A382772, equal A382878.
For prescribed signature we have A382773, equal A382858.
The restriction to factorials is A382774, equal A335407.
For equal instead of distinct run-lengths we have A382857.
For run-sums instead of run-lengths we have A382876, equal A382877.
Positions of terms > 1 are A383113.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, complement A351293.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],UnsameQ@@Length/@Split[#]&]],{n,30}]

Formula

a(A181821(n)) = a(A304660(n)) = A382773(n).
a(n!) = A382774(n).

A318286 Number of strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 5, 5, 3, 9, 4, 7, 9, 15, 5, 18, 6, 16, 14, 10, 8, 31, 17, 14, 40, 25, 10, 34, 12, 52, 21, 19, 27, 70, 15, 25, 31, 59, 18, 57, 22, 38, 80, 33, 27, 120, 46, 67, 44, 56, 32, 172, 42, 100, 61, 43, 38, 141, 46, 55, 143, 203, 64, 91, 54, 80
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[strfacs[Times@@Prime/@nrmptn[n]]],{n,60}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
    a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 18 2018

Formula

a(n) = A045778(A181821(n)).
a(prime(n)^k) = A219585(n, k). - Andrew Howroyd, Dec 17 2018

A339618 Heinz numbers of non-graphical integer partitions of even numbers.

Original entry on oeis.org

3, 7, 9, 10, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 147
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime indices of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the unordered prime signature of n is graphical.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         43: {14}        79: {22}
      7: {4}         46: {1,9}       82: {1,13}
      9: {2,2}       49: {4,4}       84: {1,1,2,4}
     10: {1,3}       52: {1,1,6}     85: {3,7}
     13: {6}         53: {16}        87: {2,10}
     19: {8}         55: {3,5}       88: {1,1,1,5}
     21: {2,4}       57: {2,8}       89: {24}
     22: {1,5}       61: {18}        91: {4,6}
     25: {3,3}       62: {1,11}      94: {1,15}
     28: {1,1,4}     63: {2,2,4}    100: {1,1,3,3}
     29: {10}        66: {1,2,5}    101: {26}
     30: {1,2,3}     70: {1,3,4}    102: {1,2,7}
     34: {1,7}       71: {20}       107: {28}
     37: {12}        75: {2,3,3}    111: {2,12}
     39: {2,6}       76: {1,1,8}    113: {30}
For example, there are three possible multigraphs with degrees (1,1,3,3):
  {{1,2},{1,2},{1,2},{3,4}}
  {{1,2},{1,2},{1,3},{2,4}}
  {{1,2},{1,2},{1,4},{2,3}}.
Since none of these is a graph, the Heinz number 100 belongs to the sequence.
		

Crossrefs

A181819 applied to A320894 gives this sequence.
A300061 is a superset.
A339617 counts these partitions.
A320922 ranks the complement, counted by A000569.
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618 [this sequence]).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&]

Formula

Equals A300061 \ A320922.
For all n, A181821(a(n)) and A304660(a(n)) belong to A320894.

A238690 Let each integer m (1 <= m <= n) be factorized as m = prime_m(1)*prime_m(2)*...*prime_m(bigomega(m)), with the primes sorted in nonincreasing order. Then a(n) is the number of values of m such that each prime_m(i) <= prime_n(i).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 4, 6, 7, 6, 7, 7, 9, 9, 5, 8, 9, 9, 10, 12, 11, 10, 9, 10, 13, 10, 13, 11, 14, 12, 6, 15, 15, 14, 12, 13, 17, 18, 13, 14, 19, 15, 16, 16, 19, 16, 11, 15, 16, 21, 19, 17, 14, 18, 17, 24, 21, 18, 19, 19, 23, 22, 7, 22, 24, 20, 22, 27, 23, 21
Offset: 1

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

Equivalently, a(n) equals the number of values of m such that each value of A238689 T(m,k) <= A238689 T(n,k). (Since the prime factorization of 1 is the empty factorization, we consider each prime_1(i) not to be greater than prime_n(i) for all positive integers n.)
Suppose we say that n "covers" m iff both m and n are factorized as described in the sequence definition and each prime_m(i) <= prime_n(i). At least three sequences (A037019, A108951 and A181821) have the property that a(m) divides a(n) iff n "covers" m. These sequences are also divisibility sequences (i.e., sequences with the property that a(m) divides a(n) if m divides n), since any positive integer "covers" each of its divisors.
For any positive integers m and k, the following integer sequences (with n >= 0) are arithmetic progressions:
1. The sequence b(n) = a(m*(2^n)).
2. The sequence b(n) = a(m*(prime(n+k))) if prime(k) >= A006530(m).
Also, a(n) = the number of distinct prime signatures that occur among the divisors of any integer m such that A181819(m) = n and/or A238745(m) = n.
Number of skew partitions whose numerator has Heinz number n, where a skew partition is a pair y/v of integer partitions such that the diagram of v fits inside the diagram of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Feb 24 2018

Examples

			The prime factorizations of integers 1 through 9, with prime factors sorted from largest to smallest:
1 - the empty factorization (no prime factors)
2 = 2
3 = 3
4 = 2*2
5 = 5
6 = 3*2
7 = 7
8 = 2*2*2
9 = 3*3
To find a(9), we consider 9 = 3*3. There are 6 positive integers (1, 2, 3, 4, 6 and 9) which satisfy the following criteria:
1) The largest prime factor, if one exists, is not greater than 3;
2) The second-largest prime factor, if one exists, is not greater than 3;
3) The total number of prime factors (counting repeated factors) does not exceed 2.
Therefore, a(9) = 6.
From _Gus Wiseman_, Feb 24 2018: (Start)
Heinz numbers of the a(15) = 9 partitions contained within the partition (32) are 1, 2, 3, 4, 5, 6, 9, 10, 15. The a(15) = 9 skew partitions are (32)/(), (32)/(1), (32)/(11), (32)/(2), (32)/(21), (32)/(22), (32)/(3), (32)/(31), (32)/(32).
Corresponding diagrams are:
  o o o   . o o   . o o   . . o   . . o   . . o   . . .   . . .   . . .
  o o     o o     . o     o o     . o     . .     o o     . o     . .    (End)
		

Crossrefs

Rearrangement of A115728, A115729 and A238746. A116473(n) is the number of times n appears in the sequence.

Programs

  • Mathematica
    undptns[y_]:=Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&];
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[undptns[Reverse[primeMS[n]]]],{n,100}] (* Gus Wiseman, Feb 24 2018 *)

Formula

a(n) = A085082(A108951(n)) = A085082(A181821(n)).
a(n) = a(A122111(n)).
a(prime(n)) = a(2^n) = n+1.
a((prime(n))^m) = a((prime(m))^n) = binomial(n+m, n).
a(A002110(n)) = A000108(n+1).
A000005(n) <= a(n) <= n.
Previous Showing 31-40 of 129 results. Next