cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A000343 5th power of rooted tree enumerator; number of linear forests of 5 rooted trees.

Original entry on oeis.org

1, 5, 20, 70, 230, 721, 2200, 6575, 19385, 56575, 163952, 472645, 1357550, 3888820, 11119325, 31753269, 90603650, 258401245, 736796675, 2100818555, 5990757124, 17087376630, 48753542665, 139155765455, 397356692275, 1135163887190, 3244482184720, 9277856948255
Offset: 5

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-4)^5, x=0, n+1), x,n): seq(a(n), n=5..29); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[Series[B[n-4]^5, {x, 0, n+1}], x, n]; Table[a[n], {n, 5, 32}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

G.f.: B(x)^5 where B(x) is g.f. of A000081.
a(n) ~ 5 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000395 6th power of rooted tree enumerator; number of linear forests of 6 rooted trees.

Original entry on oeis.org

1, 6, 27, 104, 369, 1236, 3989, 12522, 38535, 116808, 350064, 1039896, 3068145, 9004182, 26314773, 76652582, 222705603, 645731148, 1869303857, 5404655358, 15611296146, 45060069406, 129989169909, 374843799786, 1080624405287
Offset: 6

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-5)^6, x=0, n+1), x,n): seq(a(n), n=6..30);  # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-5]^6, {x, 0, n}]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)

Formula

G.f.: B(x)^6 where B(x) is g.f. of A000081.
a(n) ~ 6 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000368 Number of connected graphs with one cycle of length 4.

Original entry on oeis.org

1, 1, 4, 9, 28, 71, 202, 542, 1507, 4114, 11381, 31349, 86845, 240567, 668553, 1860361, 5188767, 14495502, 40572216, 113743293, 319405695, 898288484, 2530058013, 7135848125, 20152898513, 56986883801
Offset: 4

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 69.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A217781.
Second diagonal of A058879.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[4], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {5, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    A000081 = Rest[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[All, 2]]]; max = 30; g81 = Sum[A000081[[k]]*x^k, {k, 1, max}]; g81x2 = Sum[A000081[[k]]*x^(2 k), {k, 1, max}]; g81x4 = Sum[A000081[[k]]*x^(4 k), {k, 1, max}]; Drop[CoefficientList[ Series[(2*g81x4 + 3*g81x2^2 + 2*g81^2*g81x2 + g81^4)/8, {x, 0, max}], x], 4] (* Vaclav Kotesovec, Dec 25 2020 *)
  • PARI
    g(Q)={my(V=Vec(Q),D=Set(V),d=#D); if(d==4,return(3*f[D[1]]*f[D[2]]*f[D[3]]*f[D[4]]));
    if(d==1, return((f[D[1]]^4+2*f[D[1]]^3+3*f[D[1]]^2+2*f[D[1]])/8));
    my(k=1, m = #select(x->x == D[k],V), t); while(m==1, k++; m = #select(x->x == D[k], V)); t = D[1]; D[1] = D[k]; D[k] = t;
    if(d == 3, return( f[D[1]] * f[D[2]] * f[D[3]] * (3 * f[D[1]] + 1)/2 ) );
    if(m==3, return(f[D[1]]^2 * f[D[2]] * (f[D[1]] + 1)/2));
    ((3*f[D[2]]^2 + f[D[2]])*f[D[1]]^2 + (f[D[2]]^2 + 3*f[D[2]])*f[D[1]])/4 };
    seq(max_n) = { my(s, a = vector(max_n), U); f = vector(max_n); f[1] = 1;
    for(j=1, max_n - 1, if(j%100==0,print(j)); f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));
    for(n=4, max_n, s=0; forpart(Q = n, if( (Q[4] > Q[3]) && (Q[3]-1 > Q[2]),
          U = U / (f[Q[4] + 1] * f[Q[3] - 1]) * f[Q[4]] * f[Q[3]],  U = g(Q)); s += U,
    [1,n],[4,4]); a[n] = s; if(n % 100 == 0, print(n": " s))); a[4..max_n] };
    \\ Washington Bomfim, Jul 19 2012 and Dec 22 2020

Formula

From Washington Bomfim, Jul 19 2012 and Dec 22 2020: (Start)
a(n) = Sum_{P}( g(Q) ), where P is the set of the partitions Q of n with 4 parts, Q with distinct parts D[1]..D[d], D[1] the part of maximum multiplicity m in Q, f(n) = A000081(n), and g(Q) given by,
| 3 * f(D[1]) * f(D[2]) * f(D[3]) * f(D[4]), if d = 4,
| (f(D[1])^4 + 2*f(D[1])^3 + 3*f(D[1])^2 + 2*f(D[1]))/8, if d = 1,
g(Q) = | f(D[1]) * f(D[2]) * f(D[3]) * (3 * f(D[1]) + 1)/2, if d = 3,
| ((3*f(D[2])^2+f(D[2]))*f(D[1])^2+(f(D[2])^2+3*f(D[2]))*f(D[1]))/4,
| if d=2, and m=2,
| f(D[1])^2 * f(D[2]) * (f(D[1]) + 1)/2, if d=2, and m=3.
(End)
G.f.: (2*t(x^4) + 3*t(x^2)^2 + 2*t(x)^2*t(x^2) + t(x)^4)/8 where t(x) is the g.f. of A000081. - Andrew Howroyd, Dec 03 2020
a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - Vaclav Kotesovec, Dec 25 2020

Extensions

More terms from Vladeta Jovovic, Apr 20 2000
Definition improved by Franklin T. Adams-Watters, May 16 2006
More terms from Sean A. Irvine, Nov 14 2010

A209397 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} a(k)*x^(n*k)/k ).

Original entry on oeis.org

1, 3, 7, 19, 46, 129, 337, 939, 2581, 7238, 20263, 57337, 162319, 461961, 1317217, 3767035, 10792400, 30983565, 89084845, 256531814, 739658815, 2135234247, 6170505666, 17849457873, 51679366171, 149750711581, 434260829464, 1260198317509, 3659410074933
Offset: 1

Views

Author

Paul D. Hanna, Mar 07 2012

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 129*x^6/6 +...
Let G(x) be the g.f. of A000081, then
exp(L(x)) = G(x)/x where G(x) = x*exp( Sum_{n>=1} G(x^n)/n ) begins:
G(x) = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + 286*x^9 + 719*x^10 + 1842*x^11 + 4766*x^12 + 12486*x^13 + 32973*x^14 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, n\m, L[k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}
    for(n=1,30,print1(a(n),","))

Formula

a(n) = Sum_{d|n} d*A000081(d).
L.g.f.: Sum_{n>=1} -A000081(n) * log(1-x^n).
L.g.f.: log( G(x)/x ) = Sum_{n>=1} G(x^n)/n where G(x) is the g.f. of A000081, which is the number of rooted trees with n nodes.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.4399240125710253040409... . - Vaclav Kotesovec, Oct 30 2014

A255170 a(n) = A087803(n) - n + 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355, 55469186, 152524366, 420807220, 1164532203, 3231706847, 8991343356, 25075077684, 70082143952, 196268698259, 550695545855, 1547867058852
Offset: 1

Views

Author

Vladimir Reshetnikov, Feb 15 2015

Keywords

Comments

Conjectured extension of A199812: number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega. So far all known terms of A199812 (that is, 20 of them) coincide with this sequence. It is conjectured that A199812 is actually identical to this sequence, but it remains unproved, and is computationally difficult to check for n > 20.

Examples

			a(4) = 1 - 4 + Sum_{k=1..4} A000081(k) = 1 - 4 + 1 + 1 + 2 + 4 = 5.
a(5) = 1 - 5 + Sum_{k=1..5} A000081(k) = 1 - 5 + 1 + 1 + 2 + 4 + 9 = 13.
		

Crossrefs

Cf. A199812 (conjectured to be identical), A087803, A000081, A174145 (2nd differences), A005348, A002845, A198683, A187770, A051491.

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; `if`(n<2, n, (add(add(
          d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
          add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<3, 1,
          b(n-1$2) +2*a(n-1) -a(n-2))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 17 2015
  • Mathematica
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n] - 1; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)

Formula

a(n) = 1 - n + Sum_{k=1..n} A000081(k).
Recurrence: a(1) = 1, a(n+1) = a(n) + A000081(n+1) - 1.
Recurrence: a(1) = a(2) = 1, a(n) = A174145(n-1) + 2*a(n-1) - a(n-2).
Asymptotics: a(n) ~ c * d^n / n^(3/2), where c = A187770 / (1 - 1 / A051491) = 0.664861... and d = A051491 = 2.955765...

Extensions

Simpler definition and program in terms of A000081. - Vladimir Reshetnikov, Aug 12 2016
Renamed. - Vladimir Reshetnikov, Aug 23 2016

A339986 Decimal expansion of a constant related to the asymptotics of A339984.

Original entry on oeis.org

0, 5, 7, 8, 4, 4, 6, 7, 8, 7, 8, 4, 8, 5, 6, 0, 5, 8, 9, 2, 2, 6, 7, 2, 8, 5, 7, 4, 8, 4, 0, 9, 3, 3, 9, 2, 5, 0, 3, 1, 1, 0, 3, 9, 2, 0, 2, 3, 0, 2, 0, 3, 8, 5, 8, 8, 7, 6, 9, 3, 6, 8, 5, 9, 5, 0, 9, 2, 2, 9, 4, 3, 7, 0, 8, 3, 1, 7, 3, 8, 1, 7, 0, 2, 2, 6, 3, 0, 4, 2, 8, 8, 0, 7, 7, 5, 0, 1, 1, 2, 1, 2, 0, 6, 8, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2020

Keywords

Examples

			0.057844678784856058922672857484093392503110392...
		

Crossrefs

Formula

Equals lim_{n->infinity} A339984(n) * n^(3/2) / A051491^n.

A174145 Number of rooted forests with n nodes in which each component contains at least two nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 28, 67, 171, 433, 1123, 2924, 7720, 20487, 54838, 147570, 399466, 1086312, 2967517, 8137552, 22395604, 61833349, 171227674, 475442129, 1323449661, 3692461865, 10324097819, 28923331940, 81179488039, 228240293289, 642744665401, 1812762839702
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2010

Keywords

Comments

Row sums of A174135.

Crossrefs

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
          add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..32);  # Alois P. Heinz, May 17 2013
  • Mathematica
    t[n_] := t[n] = If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, Sum[b[n-i*j, i-1]*Binomial[t[i]+j-1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n] // FullSimplify, {n, 0, 32}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
    t[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n-1}, {m, (n-1)/k}]; a[n_] := t[n+1] - t[n]; Table[a[n], {n, 0, 32}] (* Vladimir Reshetnikov, Aug 12 2016 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.8603881121111431... . - Vaclav Kotesovec, Sep 10 2014
In the asymptotics above the constant c = A187770 * (A051491 - 1). - Vladimir Reshetnikov, Aug 12 2016
a(n) = A000081(n+1) - A000081(n). - Vladimir Reshetnikov, Nov 06 2015

A299039 Number of rooted trees with 2n nodes where each node has at most n children.

Original entry on oeis.org

1, 1, 3, 17, 106, 693, 4690, 32754, 234746, 1719325, 12820920, 97039824, 743680508, 5759507657, 45006692668, 354425763797, 2809931206626, 22409524536076, 179655903886571, 1447023307374888, 11703779855021636, 95020085240320710, 774088021528328920
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2018

Keywords

Examples

			a(2) = 3:
   o     o       o
   |     |      / \
   o     o     o   o
   |    / \    |
   o   o   o   o
   |
   o
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-1$2, n$2)):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[2n - 1, 2n - 1, n, n]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, from Maple *)

Formula

a(n) = A299038(2n,n).
a(n) ~ c * d^n / n^(3/2), where d = A051491^2 = 8.736548423865419449938118272879... and c = A187770 / 2^(3/2) = 0.155536626247883986039760097126... - Vaclav Kotesovec, Feb 02 2018, updated Mar 17 2024

A029852 Number of connected functions on n points with a loop of length 3.

Original entry on oeis.org

1, 1, 3, 9, 23, 62, 169, 451, 1217, 3291, 8916, 24243, 66155, 181053, 497134, 1369064, 3780942, 10469573, 29063361, 80867990, 225508124, 630145449, 1764240907, 4948365051, 13902893423, 39124094362, 110265280739, 311208414556, 879523722747, 2488832434859
Offset: 3

Views

Author

Keywords

Crossrefs

Column 3 of A339428.
Cf. A000081.

Programs

  • Mathematica
    nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol =
    SolveAlways[
      0 == Series[
        f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
      x]; b = Flatten[Table[a[n], {n, 1, nn}] /. sol]; CoefficientList[
    Series[CycleIndex[CyclicGroup[3], s] /.
       Table[s[i] -> Sum[b[[k]] x^(k*i), {k, 1, nn}], {i, 1, 3}], {x, 0,
    nn}], x] (* Geoffrey Critzer, Aug 08 2013 *)

Formula

G.f.: A(x) = ( B(x)^3 + 2*B(x^3) )/3 where B(x) is o.g.f. for A000081. - Geoffrey Critzer, Aug 09 2013
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020

A029853 Number of connected functions on n points with a loop of length 4.

Original entry on oeis.org

1, 1, 4, 11, 35, 97, 282, 792, 2243, 6275, 17602, 49206, 137713, 385208, 1078667, 3022342, 8478199, 23807190, 66932592, 188394855, 530911452, 1497892857, 4230987944, 11964356354, 33869704270, 95982410945, 272279600817, 773153124315, 2197492308752
Offset: 4

Views

Author

Keywords

Crossrefs

Column 4 of A339428.

Programs

  • Mathematica
    nn = 20; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol =
    SolveAlways[
      0 == Series[
        f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
      x]; b = Flatten[Table[a[n], {n, 1, nn}] /. sol]; CoefficientList[
    Series[CycleIndex[CyclicGroup[4], s] /.
       Table[s[i] -> Sum[b[[k]] x^(k*i), {k, 1, nn}], {i, 1, 4}], {x, 0,
    nn}], x] (* Geoffrey Critzer, Aug 08 2013 *)

Formula

G.f.: A(x) = ( B(x)^4 + B(x^2)^2 + 2*B(x^4) )/4 where B(x) is the o.g.f. for A000081. - Geoffrey Critzer, Aug 09 2013
a(n) ~ A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Dec 25 2020
Previous Showing 11-20 of 29 results. Next