cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.

Examples

			The terms together with their prime indices begin:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
   0: ()
   1: (1)
   2: (2)  or (11)
   3: (12)
   4: (112)
   6: (6)
   7: (16)
   8: (26) or (116)
   9: (126)
  10: (1126)
But 5 is missing, so 156 is in the sequence.
		

Crossrefs

For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[nmz[prix[#]]]>0&]

A365918 Number of distinct non-subset-sums of integer partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 8, 19, 24, 46, 60, 101, 124, 206, 250, 378, 462, 684, 812, 1165, 1380, 1927, 2268, 3108, 3606, 4862, 5648, 7474, 8576, 11307, 12886, 16652, 19050, 24420, 27584, 35225, 39604, 49920, 56370, 70540, 78608, 98419, 109666, 135212, 151176, 185875, 205308
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The a(6) = 19 ways, showing each partition and its non-subset-sums:
       (6): 1,2,3,4,5
      (51): 2,3,4
      (42): 1,3,5
     (411): 3
      (33): 1,2,4,5
     (321):
    (3111):
     (222): 1,3,5
    (2211):
   (21111):
  (111111):
		

Crossrefs

Row sums of A046663, strict A365663.
The zero-full complement (subset-sums) is A304792.
The strict case is A365922.
Weighted row-sums of A365923, rank statistic A325799, complement A365658.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Complement[Range[n],Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,10}]
  • Python
    # uses A304792_T
    from sympy import npartitions
    def A365918(n): return (n+1)*npartitions(n)-A304792_T(n,n,(0,),1) # Chai Wah Wu, Sep 25 2023

Formula

a(n) = (n+1)*A000041(n) - A304792(n).

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 25 2023

A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf. A126796.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (211)   (311)    (321)     (3211)     (3221)
             (111)  (1111)  (2111)   (3111)    (4111)     (32111)
                            (11111)  (21111)   (22111)    (41111)
                                     (111111)  (31111)    (221111)
                                               (211111)   (311111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of weak run-sums we have A000009.
For multiplicities instead of weak run-sums we have A317081.
If weak run-sums are distinct we have A353865, the completion of A353864.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870, comps A353860.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct weak run-sums of prime indices.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}]
  • PARI
    \\ isok(p) tests the partition.
    isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0}
    a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(31) onwards from Andrew Howroyd, Jan 15 2024

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A325782 Heinz numbers of strict perfect integer partitions.

Original entry on oeis.org

1, 2, 6, 42, 798, 42294, 5540514, 1723099854, 1238908795026, 2005793339147094, 7363267348008982074, 60091624827101302705914, 1073416694286510570235741782, 41726927156999525396773990291686, 3505771238949629125260760342336582662
Offset: 1

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The sum of prime indices of n is A056239(n). A number is in this sequence iff it is squarefree, all of its divisors have distinct sums of prime indices, and these sums cover an initial interval of nonnegative integers. For example, the divisors of 42 are {1, 2, 3, 6, 7, 14, 21, 42}, with respective sums of prime indices {0, 1, 2, 3, 4, 5, 6, 7}, so 42 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      6: {1,2}
     42: {1,2,4}
    798: {1,2,4,8}
  42294: {1,2,4,8,16}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime[2^Range[0,n-1]],{n,0,10}]

Formula

a(n) = Product_{i = 0..n-1} prime(2^i).

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   4  0  2  0  1  0
   5  1  0  3  1  1  0
   8  0  3  0  3  0  1  0
  10  2  1  2  2  3  1  1  0
  16  0  5  0  3  0  5  0  1  0
  20  2  2  4  2  6  0  4  1  1  0
  31  0  6  0  8  0  5  0  5  0  1  0
  39  4  4  4  1  6  6  3  2  6  1  1  0
  55  0 13  0  8  0 12  0  6  0  6  0  1  0
  71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
Row n = 6 counts the following partitions:
  (321)     (411)  .  (51)   (33)  (6)  .
  (3111)              (42)
  (2211)              (222)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The rank statistic counted by this triangle is A325799.
The strict case is A365545, weighted row sums A365922.
The complement (positive subset-sum) is A365658.
Weighted row sums are A365918, for positive subset-sums A304792.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]

A325828 Number of integer partitions of n having exactly n + 1 submultisets.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 12, 1, 3, 4, 21, 1, 14, 1, 18, 4, 3, 1, 116, 3, 3, 12, 25, 1, 40, 1, 271, 4, 3, 4, 325, 1, 3, 4, 295, 1, 56, 1, 36, 47, 3, 1, 3128, 4, 32, 4, 44, 1, 407, 4, 566, 4, 3, 1, 1598, 1, 3, 65, 10656, 5, 90, 1, 54, 4, 84, 1
Offset: 0

Views

Author

Gus Wiseman, May 25 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325792.
The number of submultisets of an integer partition is the product of its multiplicities, each plus one.

Examples

			The 12 = 11 + 1 submultisets of the partition (4331) are: (), (1), (3), (4), (31), (33), (41), (43), (331), (431), (433), (4331), so (4331) is counted under a(11).
The a(5) = 3 through a(11) = 12 partitions:
  221    111111  421      3311      22221      1111111111  4322
  311            2221     11111111  51111                  4331
  11111          4111               111111111              4421
                 1111111                                   5411
                                                           6221
                                                           6311
                                                           7211
                                                           33311
                                                           44111
                                                           222221
                                                           611111
                                                           11111111111
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> b(n$2,n+1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])-1==n&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = Quotient[p, j + 1]; Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := b[n, n, n+1];
    a /@ Range[0, 80] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
Is column k = n - 7 given by A325695?

Examples

			Triangle begins:
  1
  1  0
  0  1  0
  1  0  1  0
  0  1  0  1  0
  0  0  2  0  1  0
  1  0  0  2  0  1  0
  1  0  0  0  3  0  1  0
  0  1  1  0  0  3  0  1  0
  0  0  3  0  0  0  4  0  1  0
  1  0  0  2  2  0  0  4  0  1  0
  1  0  0  0  5  0  0  0  5  0  1  0
  2  0  0  0  0  5  2  0  0  5  0  1  0
  2  0  1  0  0  0  8  0  0  0  6  0  1  0
  1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
  2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
  1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
  2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
  3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
Row n = 12: counts the following partitions:
  (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
  (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
                         (7,4,1)                 (9,3)
                         (7,3,2)                 (8,4)
                         (5,4,3)                 (7,5)
		

Crossrefs

Row sums are A000009, non-strict A000041.
The complement (positive subset-sums) is also A365545 with rows reversed.
Weighted row sums are A365922, non-strict A365918.
The non-strict version is A365923, complement A365658, rank stat A325799.
A046663 counts partitions without a subset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]
Previous Showing 11-20 of 44 results. Next