cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A369205 Numbers m such that A188999(A034448(m)) = k*m for some k, where A034448 and A188999 are respectively the unitary and the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 9, 10, 15, 18, 21, 30, 40, 42, 60, 120, 288, 567, 630, 720, 756, 1023, 1134, 1428, 2046, 2160, 2268, 2520, 3024, 3276, 3570, 4092, 6048, 8184, 8925, 9240, 11424, 11550, 15345, 17850, 18144, 30690, 35700, 46200, 57120, 85680, 147312, 285600, 491040, 556920
Offset: 1

Views

Author

Tomohiro Yamada, Jan 16 2024

Keywords

Examples

			A034448(18) = 4 * 10 = 40 and A188999(40) = 15 * 6 = 90 = 5 * 18, so 18 is a term with k = 5.
		

Crossrefs

Cf. A038843 (analog for A034448(A034448(m))), A318175 (analog for A188999(A188999(m))).
Cf. A369204 (analog for A034448(A188999(m))).

Programs

  • PARI
    a034448(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=p^e+1;f[i,2]=1);factorback(f)};
    a188999(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=if(e%2,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2));f[i,2]=1);factorback(f)};
    isok(n) = (a188999(a034448(n))%n) == 0;

A294029 Values of bsigma(k) = bsigma(k+1), where bsigma is the sum of the bi-unitary divisors (A188999).

Original entry on oeis.org

24, 40, 60, 720, 960, 1440, 2160, 2640, 2400, 3000, 4320, 4320, 4320, 5280, 7400, 11520, 11880, 12960, 14400, 20160, 30240, 26640, 34560, 25200, 34560, 49920, 51840, 60480, 63360, 60480, 65280, 62400, 61560, 115200, 93600, 114912, 100800, 120960, 120960
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

The sum of bi-unitary divisors of numbers n such that n and n+1 have the same sum (A293183).
The bi-unitary version of A053215.

Examples

			24 is in the sequence since 24 = bsigma(14) = bsigma(15).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; For[k = 0, k < 10^6, k++; b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2]; a (* after Michael De Vlieger at A188999 *)

Formula

a(n) = A188999(A293183(n)).

A309568 Bi-unitary k-hyperperfect numbers: numbers m such that m = 1 + k * (bsigma(m) - m - 1) where bsigma(m) is the sum of bi-unitary divisors of m (A188999) and k >= 1 is an integer.

Original entry on oeis.org

6, 21, 52, 60, 90, 301, 657, 697, 1333, 1909, 2041, 2133, 3901, 15025, 24601, 26977, 96361, 130153, 163201, 176661, 250321, 275833, 296341, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053, 1246417, 1284121, 1357741, 1403221
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2019

Keywords

Comments

The bi-unitary version of A034897.
The only bi-unitary 1-hyperperfect numbers are 6, 60, and 90 (the bi-unitary perfect numbers).
The corresponding k values are 1, 2, 3, 1, 1, 6, 8, 12, 18, 18, 12, 2, 30, 24, 60, 48, 132, 132, 192, 2, 168, 108, 66, 252, 78, 132, 342, 366, 390, 168, 348, 282, 498, 552, 540, 30, 546, ...

Examples

			21 is in the sequence since bsigma(21) = 32 and 21 = 1 + 2 * (32 - 21 - 1).
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); hpnQ[n_] := (c = bsigma[n]-n-1) > 0 && Divisible[n-1, c]; Select[Range[10^5],  hpnQ]

A318242 a(n) is the least k such that A188999(A188999(k)) = n*k, where A188999 is the bi-unitary sigma function, or 0 if no such k exists.

Original entry on oeis.org

1, 2, 8, 15, 24, 42, 240, 648, 168, 480, 321408, 4320, 57120, 103680, 1827840, 23591520, 898128000, 374250240
Offset: 1

Views

Author

Michel Marcus, Aug 22 2018

Keywords

Comments

It is also known that a(20) = 11975040.
Then for higher indices n, we have:
a(19) <= 5235707393280;
a(21) <= 49110437376000;
a(22) <= 106780561395056640;
a(24) <= 1099525819392000;
a(25) <= 41252767395840;
a(26) <= 202768780032000.

Crossrefs

Cf. A272930 (analog for sigma), A318272 (analog for infinitary sigma).

A318781 A188999(m)/m for the integers m such that A188999(m) is divisible by m, where A188999 is the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 4, 3
Offset: 1

Views

Author

Michel Marcus, Sep 03 2018, following a suggestion from Felix Fröhlich

Keywords

Comments

10496266260480 is a term of A189000 and it is the smallest known value x such that A188999(x)/x is 5.

Crossrefs

Cf. A188999 (bi-unitary sigma), A189000 (multiply perfect for bi-unitary sigma).
Cf. A054030 (analog for sigma), A007691 (multiply perfect for sigma).

Programs

  • PARI
    a188999(n) = my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f) \\ after Michel Marcus in A189000
    is_a189000(n) = ! frac(a188999(n)/n) \\ after Michel Marcus in A189000
    for(n=1, oo, if(is_a189000(n), print1(a188999(n)/n, ", "))) \\ Felix Fröhlich, Sep 03 2018

Formula

a(n) = A188999(A189000(n))/A189000(n).

Extensions

a(33)-a(42) from Giovanni Resta, Sep 03 2018

A322162 Numbers k such that bsigma(k) = 2k + 2, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

Original entry on oeis.org

80, 104, 832, 1952, 7424, 62464, 522752, 8382464, 33357824, 134193152, 267649024, 17167286272, 549754241024
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2018

Keywords

Comments

The bi-unitary version of A088831.
If m is a term of A050414, i.e., 2^m - 3 is prime, then 2^(2*m-2) * (2^m-3) is in this sequence, and also 2^(m-1) * (2^m-3) if m is even.

Examples

			80 is in this sequence since its sum of bi-unitary divisors is 162 = 2 * 80 + 2.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; Select[Range[2,10000], Times@@(fun @@@ FactorInteger[#]) == 2#+2 &]
  • PARI
    bsigma(n,f=factor(n))=prod(i=1,#f~, my(p=f[i,1], e=f[i, 2]); if (e%2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)));
    forfactored(n=1,10^8, if(bsigma(n[1],n[2])==2*n[1]+2, print1(n[1]", "))) \\ Charles R Greathouse IV, Nov 29 2018

Extensions

a(13) from Giovanni Resta, Dec 01 2018

A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Haskell
    a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
  • Maple
    A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
    a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # Peter Luschny, May 03 2009
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
  • PARI
    A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ Rick L. Shepherd
    
  • PARI
    A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Erich Friedman

A286324 a(n) is the number of bi-unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

a(n) is the number of terms of the n-th row of A222266.

Examples

			From _Michael De Vlieger_, May 07 2017: (Start)
a(1) = 1 since 1 is the empty product; all divisors of 1 (i.e., 1) have a greatest common unitary divisor that is 1. 1 is a unitary divisor of all numbers n.
a(p) = 2 since 1 and p have greatest common unitary divisor 1.
a(6) = 4 since the divisor pairs {1, 6} and {2, 3} have greatest common unitary divisor 1.
a(24) = 8 since {1, 24}, {2, 12}, {3, 8}, {4, 6} have greatest unitary divisors {1, {1, 3, 8, 24}}, {{1, 2}, {1, 3, 4, 12}}, {{1, 3}, {1, 8}}, {{1, 4}, {1, 2, 3, 6}}: 1 is the greatest common unitary divisor among all 4 pairs. (End)
		

Crossrefs

Cf. A222266, A188999, A293185 (indices of records), A340232, A350390.
Cf. A000005, A034444 (unitary), A037445 (infinitary).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[DivisorSum[n, 1 &, Last@ Intersection[f@ #, f[n/#]] == 1 &], {n, 90}] (* Michael De Vlieger, May 07 2017 *)
    f[p_, e_] := If[OddQ[e], e + 1, e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120] (* Amiram Eldar, Dec 19 2018 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = #biudivs(n);
    
  • PARI
    a(n)={my(f=factor(n)[,2]); prod(i=1, #f, my(e=f[i]); e + e % 2)} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (X^3 - X^2 + X + 1) / ((X-1)^2 * (X+1)))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = e + (e mod 2). - Andrew Howroyd, Aug 05 2018
a(A340232(n)) = 2*n. - Bernard Schott, Mar 12 2023
a(n) = A000005(A350390(n)) (the number of divisors of the largest exponentially odd number dividing n). - Amiram Eldar, Sep 01 2023
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Let f(s) = Product_{p prime} (1 - (p^s - 1)/((p^s + 1)*p^(2*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (p-1)/((p+1)*p^2)) = A306071 = 0.80733082163620503914865427993003113402584582508155664401800520770441381...,
f'(1) = f(1) * Sum_{p prime} 2*(p^2 - p - 1) * log(p) /(p^4 + 2*p^3 + 1) = f(1) * 0.40523703144422392508596509911218523410441417240419849262346362977537989... = f(1) * A306072
and gamma is the Euler-Mascheroni constant A001620. (End)

A222266 Irregular triangle which lists the bi-unitary divisors of n in row n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 8, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1, 2, 3, 5, 6, 10, 15, 30, 1, 31, 1, 2, 4, 8, 16, 32, 1, 3, 11, 33, 1, 2, 17, 34, 1, 5, 7, 35
Offset: 1

Views

Author

R. J. Mathar, May 05 2013

Keywords

Comments

The bi-unitary divisors of n are the divisors of n such that the largest common unitary divisor of d and n/d is 1, indicated by A165430.
The first difference from the triangle A077609 is in row n=16.
The concept of bi-unitary divisors was introduced by Suryanarayana (1972). - Amiram Eldar, Mar 09 2024

Examples

			The table starts
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
  1, 13;
  1, 2, 7, 14;
  1, 3, 5, 15;
  1, 2, 8, 16;
  1, 17;
		

Crossrefs

Cf. A077609, A165430, A188999 (row sums), A286324 (row lengths).

Programs

  • Maple
    # Return set of unitary divisors of n.
    A077610_row := proc(n)
        local u,d ;
        u := {} ;
        for d in numtheory[divisors](n) do
            if igcd(n/d,d) = 1 then
                u := u union {d} ;
            end if;
        end do:
        u ;
    end proc:
    # true if d is a bi-unitary divisor of n.
    isbiudiv := proc(n,d)
        if n mod d = 0 then
            A077610_row(d) intersect A077610_row(n/d) ;
            if % = {1} then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    # Return set of bi-unitary divisors of n
    biudivs := proc(n)
        local u,d ;
        u := {} ;
        for d in numtheory[divisors](n) do
            if isbiudiv(n,d) then
                u := u union {d} ;
            end if;
        end do:
        u ;
    end proc:
    for n from 1 to 35 do
        print(op(biudivs(n))) ;
    end do:
  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[Function[d, Union@ Flatten@ Select[Transpose@ {d, n/d}, Last@ Intersection[f@ #1, f@ #2] == 1 & @@ # &]]@ Select[Divisors@ n, # <= Floor@ Sqrt@ n &], {n, 35}] (* Michael De Vlieger, May 07 2017 *)
  • PARI
    isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1;}
    row(n) = {my(d = divisors(n), f = factor(n), bdiv = []); for(i=1, #d, if(isbdiv(f, d[i]), bdiv = concat(bdiv, d[i]))); bdiv; } \\ Amiram Eldar, Mar 24 2023

A002035 Numbers that contain primes to odd powers only.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Keywords

Comments

Complement of the union of {1} and A072587. - Reinhard Zumkeller, Nov 15 2012, corrected version from Jun 23 2002
A036537 is a subsequence and this sequence is a subsequence of A162644. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is A065463. - Amiram Eldar, Sep 18 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002035 n = a002035_list !! (n-1)
    a002035_list = filter (all odd . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 14 2012
    
  • Maple
    isA002035 := proc(n)
        local pe;
        for pe in ifactors(n)[2] do
            if type(pe[2],'even') then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A002035 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA002035(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002035(n),n=1..100) ; # R. J. Mathar, Nov 27 2017
  • Mathematica
    ok[n_] := And @@ OddQ /@ FactorInteger[n][[All, 2]];
    Select[Range[2, 101], ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    Select[Range[2,110],AllTrue[FactorInteger[#][[All,2]],OddQ]&] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    is(n)=Set(factor(n)[,2]%2)==[1] \\ Charles R Greathouse IV, Feb 07 2017

Extensions

More terms from Reinhard Zumkeller, Jun 23 2002
Previous Showing 21-30 of 74 results. Next