A192799
Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2.
Original entry on oeis.org
0, 1, 0, 2, 2, 5, 12, 22, 54, 109, 242, 520, 1118, 2427, 5218, 11290, 24352, 52579, 113526, 245038, 529068, 1142087, 2465644, 5322896, 11491188, 24807721, 53555508, 115617714, 249599214, 538843277, 1163273304, 2511313222, 5421508714
Offset: 1
The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+2
F5(x)=x^4+3x^2+1 -> 4x^2+2*x+3, so that
A192798=(1,0,1,2,3,...), A192799=(0,1,0,2,2,...), A192800=(0,0,1,1,4,...)
A192800
Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2.
Original entry on oeis.org
0, 0, 1, 1, 4, 7, 16, 35, 73, 162, 344, 748, 1612, 3478, 7517, 16213, 35020, 75585, 163184, 352295, 760517, 1641880, 3544484, 7652008, 16519388, 35662584, 76989693, 166207785, 358815192, 774622191, 1672280660, 3610176155, 7793770037
Offset: 1
The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+2
F5(x)=x^4+3x^2+1 -> 4x^2+2*x+3, so that
A192798=(1,0,1,2,3,...), A192799=(0,1,0,2,2,...), A192800=(0,0,1,1,4,...)
A192746
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 5, 9, 17, 29, 49, 81, 133, 217, 353, 573, 929, 1505, 2437, 3945, 6385, 10333, 16721, 27057, 43781, 70841, 114625, 185469, 300097, 485569, 785669, 1271241, 2056913, 3328157, 5385073, 8713233, 14098309, 22811545, 36909857, 59721405, 96631265
Offset: 0
-
List([0..30], n-> 4*Fibonacci(n+2)-3); # G. C. Greubel, Jul 24 2019
-
[4*Fibonacci(n+2)-3: n in [0..30]]; // G. C. Greubel, Jul 24 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, n_]:= 1; p[n_, x_]:= x*p[n-1, x] +3n +2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192747 *) (* Clark Kimberling, Jul 09 2011 *)
(* Additional programs *)
a[0]=1;a[1]=5;a[n_]:=a[n]=a[n-1]+a[n-2]+3;Table[a[n],{n,0,36}] (* Gerry Martens, Jul 04 2015 *)
4*Fibonacci[Range[0,40]+2]-3 (* G. C. Greubel, Jul 24 2019 *)
-
vector(30, n, n--; 4*fibonacci(n+2)-3) \\ G. C. Greubel, Jul 24 2019
-
[4*fibonacci(n+2)-3 for n in (0..30)] # G. C. Greubel, Jul 24 2019
A192750
Define a pair of sequences c_n, d_n by c_0=0, d_0=1 and thereafter c_n = c_{n-1}+d_{n-1}, d_n = c_{n-1}+4*n+2; sequence here is d_n.
Original entry on oeis.org
1, 6, 11, 21, 36, 61, 101, 166, 271, 441, 716, 1161, 1881, 3046, 4931, 7981, 12916, 20901, 33821, 54726, 88551, 143281, 231836, 375121, 606961, 982086, 1589051, 2571141, 4160196, 6731341, 10891541, 17622886, 28514431, 46137321, 74651756
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192750 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192751 *)
LinearRecurrence[{2,0,-1},{1,6,11},40] (* Harvey P. Dale, Dec 03 2023 *)
A192751
Define a pair of sequences c_n, d_n by c_0=0, d_0=1 and thereafter c_n = c_{n-1}+d_{n-1}, d_n = c_{n-1}+4*n+2; sequence here is c_n.
Original entry on oeis.org
0, 1, 7, 18, 39, 75, 136, 237, 403, 674, 1115, 1831, 2992, 4873, 7919, 12850, 20831, 33747, 54648, 88469, 143195, 231746, 375027, 606863, 981984, 1588945, 2571031, 4160082, 6731223, 10891419, 17622760, 28514301, 46137187, 74651618, 120788939
Offset: 0
-
(See A192750.)
CoefficientList[Series[x (x^2-4x-1)/((x-1)^2(x^2+x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,7,18},40] (* Harvey P. Dale, Feb 23 2022 *)
A192760
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 4, 9, 18, 33, 58, 99, 166, 275, 452, 739, 1204, 1957, 3176, 5149, 8342, 13509, 21870, 35399, 57290, 92711, 150024, 242759, 392808, 635593, 1028428, 1664049, 2692506, 4356585, 7049122, 11405739, 18454894, 29860667, 48315596, 78176299
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A001594 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192760 *)
A192762
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 6, 13, 26, 47, 82, 139, 232, 383, 628, 1025, 1668, 2709, 4394, 7121, 11534, 18675, 30230, 48927, 79180, 128131, 207336, 335493, 542856, 878377, 1421262, 2299669, 3720962, 6020663, 9741658, 15762355, 25504048, 41266439, 66770524
Offset: 0
-
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 4;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A022319 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192762 *)
A192883
Constant term in the reduction by (x^2 -> x + 1) of the polynomial F(n+3)*x^n, where F = A000045 (Fibonacci sequence).
Original entry on oeis.org
2, 0, 5, 8, 26, 63, 170, 440, 1157, 3024, 7922, 20735, 54290, 142128, 372101, 974168, 2550410, 6677055, 17480762, 45765224, 119814917, 313679520, 821223650, 2149991423, 5628750626, 14736260448, 38580030725, 101003831720, 264431464442, 692290561599
Offset: 0
G.f. = 2 + 5*x^2 + 8*x^3 + 26*x^4 + 63*x^5 + 170*x^6 + ... - _Michael Somos_, Mar 18 2022
-
a:=[2,0,5];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( ( 2-4*x+x^2)/((1+x)*(1-3*x+x^2)) )); // G. C. Greubel, Jan 09 2019
-
with(combinat):seq(fibonacci(n-1)*fibonacci(n+3), n=0..27): # Gary Detlefs, Oct 19 2011
-
q = x^2; s = x + 1; z = 28;
p[0, x_] := 2; p[1, x_] := 3 x;
p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192883 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* minus A121646 *)
LinearRecurrence[{2,2,-1}, {2,0,5}, 30] (* G. C. Greubel, Jan 09 2019 *)
a[ n_] := Fibonacci[n+1]^2 + (-1)^n; (* Michael Somos, Mar 18 2022 *)
-
a(n) = round((2^(-1-n)*(7*(-1)^n*2^(1+n)+(3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n)))/5) \\ Colin Barker, Sep 29 2016
-
Vec((2+x^2-4*x)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 29 2016
-
{a(n) = fibonacci(n+1)^2 + (-1)^n}; /* Michael Somos, Mar 18 2022 */
-
((2-4*x+x^2 )/((1+x)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
A192914
Constant term in the reduction by (x^2 -> x + 1) of the polynomial C(n)*x^n, where C=A000285.
Original entry on oeis.org
1, 0, 5, 9, 28, 69, 185, 480, 1261, 3297, 8636, 22605, 59185, 154944, 405653, 1062009, 2780380, 7279125, 19057001, 49891872, 130618621, 341963985, 895273340, 2343856029, 6136294753, 16065028224, 42058789925, 110111341545, 288275234716, 754714362597
Offset: 0
-
F:=Fibonacci; List([0..30], n -> F(n+1)^2 +F(n)*F(n-3)); # G. C. Greubel, Jan 12 2019
-
F:=Fibonacci; [F(n+1)^2+F(n)*F(n-3): n in [0..30]]; // Bruno Berselli, Feb 15 2017
-
q = x^2; s = x + 1; z = 28;
p[0, x_]:= 1; p[1, x_]:= 4 x;
p[n_, x_] := p[n-1, x]*x + p[n-2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
LinearRecurrence[{2,2,-1}, {1,0,5}, 30] (* or *) With[{F:= Fibonacci}, Table[F[n+1]^2 +F[n]*F[n-3], {n, 0, 30}]] (* G. C. Greubel, Jan 12 2019 *)
-
a(n) = round((2^(-1-n)*(3*(-1)^n*2^(2+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016
-
Vec((1+3*x^2-2*x)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 29 2016
-
{f=fibonacci}; vector(30, n, n--; f(n+1)^2 +f(n)*f(n-3)) \\ G. C. Greubel, Jan 12 2019
-
f=fibonacci; [f(n+1)^2 +f(n)*f(n-3) for n in (0..30)] # G. C. Greubel, Jan 12 2019
A192969
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 2, 6, 12, 23, 41, 71, 120, 200, 330, 541, 883, 1437, 2334, 3786, 6136, 9939, 16093, 26051, 42164, 68236, 110422, 178681, 289127, 467833, 756986, 1224846, 1981860, 3206735, 5188625, 8395391, 13584048, 21979472, 35563554, 57543061, 93106651
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 2*F(n+2)+3*F(n+1)-n-4); # G. C. Greubel, Jul 11 2019
-
F:=Fibonacci; [2*F(n+2)+3*F(n+1)-n-4: n in [0..40]]; // G. C. Greubel, Jul 11 2019
-
F:= gfun:-rectoproc({a(0) = 1, a(1) = 2, a(n) = 1 + n + a(n-1) + a(n-2)},a(n),remember):
map(F, [$0..100]); # Robert Israel, Jan 18 2016
-
(* First progream *)
q = x^2; s = x + 1; z = 40;
p[0, x] := 1;
p[n_, x_] := x*p[n - 1, x] + n (n + 3)/2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192969 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192970 *)
(* Second program *)
Table[2*Fibonacci[n+2]+3*Fibonacci[n+1]-n-4, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
-
vector(40, n, n--; f=fibonacci; 2*f(n+2)+3*f(n+1)-n-4) \\ G. C. Greubel, Jul 11 2019
-
f=fibonacci; [2*f(n+2)+3*f(n+1)-n-4 for n in (0..40)] # G. C. Greubel, Jul 11 2019
-
func a((0)) { 1 }
func a((1)) { 2 }
func a(n) is cached { 1 + n + a(n-1) + a(n-2) }
100.times { |i| say a(i-1) }
# Daniel Suteu, Jan 12 2016
Comments