cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A195825 Square array T(n,k) read by antidiagonals, n>=0, k>=1, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 7, 3, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 15, 5, 3, 1, 1, 1, 1, 1, 22, 7, 4, 2, 1, 1, 1, 1, 1, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1, 56, 16, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 77, 21, 10, 4
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2011

Keywords

Comments

In the infinite square array the column k is related to the generalized m-gonal numbers, where m = k+4. For example: the first column is related to the generalized pentagonal numbers A001318. The second column is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on ... (see the program in which A195152 is a table of generalized m-gonal numbers).
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041 (see below the first row of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A195825
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. with a(0)=1]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
Conjecture: if k is odd then column k contains (k+1)/2 plateaus whose levels are the first (k+1)/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5, ... 2. Otherwise, if k is even then column k contains k/2 plateaus whose levels are the first k/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5, ... 3. The sequence A210843 gives the levels of the plateaus of column k, when k -> infinity. For the visualization of the plateaus see the graph of a column, for example see the graph of A210964. - Omar E. Pol, Jun 21 2012

Examples

			Array begins:
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
    3,  2,  1,  1,  1,  1,  1,  1,  1,  1, ...
    5,  3,  2,  1,  1,  1,  1,  1,  1,  1, ...
    7,  4,  3,  2,  1,  1,  1,  1,  1,  1, ...
   11,  5,  4,  3,  2,  1,  1,  1,  1,  1, ...
   15,  7,  4,  4,  3,  2,  1,  1,  1,  1, ...
   22, 10,  5,  4,  4,  3,  2,  1,  1,  1, ...
   30, 13,  7,  4,  4,  4,  3,  2,  1,  1, ...
   42, 16, 10,  5,  4,  4,  4,  3,  2,  1, ...
   56, 21, 12,  7,  4,  4,  4,  4,  3,  2, ...
   77, 28, 14, 10,  5,  4,  4,  4,  4,  3, ...
  101, 35, 16, 12,  7,  4,  4,  4,  4,  4, ...
  135, 43, 21, 13, 10,  5,  4,  4,  4,  4, ...
  176, 55, 27, 14, 12,  7,  4,  4,  4,  4, ...
  ...
Column 1 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11, ... The column contains only one plateau: [1, 1] which has level 1 and length 2.
Column 3 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10, ... The column contains two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2.
Column 6 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21, ... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3.
		

Crossrefs

For another version see A211970.

Formula

Column k is asymptotic to exp(Pi*sqrt(2*n/(k+2))) / (8*sin(Pi/(k+2))*n). - Vaclav Kotesovec, Aug 14 2017

A218864 Numbers of the form 9*k^2 + 8*k, k an integer.

Original entry on oeis.org

0, 1, 17, 20, 52, 57, 105, 112, 176, 185, 265, 276, 372, 385, 497, 512, 640, 657, 801, 820, 980, 1001, 1177, 1200, 1392, 1417, 1625, 1652, 1876, 1905, 2145, 2176, 2432, 2465, 2737, 2772, 3060, 3097, 3401, 3440, 3760, 3801, 4137, 4180, 4532, 4577, 4945, 4992
Offset: 1

Views

Author

Jason Kimberley, Nov 08 2012

Keywords

Comments

Numbers m such that 9*m + 16 is a square. - Vincenzo Librandi, Apr 07 2013
Equivalently, integers of the form h*(h + 8)/9 (nonnegative values of h are listed in A090570). - Bruno Berselli, Jul 15 2016
Generalized 20-gonal (or icosagonal) numbers: r*(9*r - 8) with r = 0, +1, -1, +2, -2, +3, -3, ... - Omar E. Pol, Jun 06 2018
Partial sums of A317316. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(18*n-17))*(1 + x^(18*n-1))*(1 - x^(18*n)) = 1 + x + x^17 + x^20 + x^52 + .... - Peter Bala, Dec 10 2020

Crossrefs

Characteristic function is A205987.
Numbers of the form 9*m^2+k*m, for integer n: A016766 (k=0), A132355 (k=2), A185039 (k=4), A057780 (k=6), this sequence (k=8).
Cf. A074377 (numbers m such that 16*m+9 is a square).
Cf. A317316.
For similar sequences of numbers m such that 9*m+i is a square, see list in A266956.
Cf. sequences of the form m*(m+i)/(i+1) listed in A274978. [Bruno Berselli, Jul 25 2016]
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), this sequence (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    a:=func; [0]cat[a(n*m): m in [-1,1], n in [1..20]];
  • Mathematica
    Array[(18 # (# - 1) - 7 (-1)^#*(2 # - 1) - 7)/8 &, 48] (* or *)
    CoefficientList[Series[x (1 + 16 x + x^2)/((1 + x)^2*(1 - x)^3), {x, 0, 47}], x] (* Michael De Vlieger, Jun 06 2018 *)

Formula

a(n) = (18*n*(n - 1) - 7*(-1)^n*(2*n - 1) - 7)/8. - Bruno Berselli, Nov 13 2012
G.f.: x*(1 + 16*x + x^2)/((1 + x)^2*(1 - x)^3). - Bruno Berselli, Nov 14 2012
Sum_{n>=2} 1/a(n) = (9 + 8*Pi*cot(Pi/9))/64. - Amiram Eldar, Feb 28 2022

A274979 Integers of the form m*(m + 7)/8.

Original entry on oeis.org

0, 1, 15, 18, 46, 51, 93, 100, 156, 165, 235, 246, 330, 343, 441, 456, 568, 585, 711, 730, 870, 891, 1045, 1068, 1236, 1261, 1443, 1470, 1666, 1695, 1905, 1936, 2160, 2193, 2431, 2466, 2718, 2755, 3021, 3060, 3340, 3381, 3675, 3718, 4026, 4071, 4393, 4440, 4776, 4825
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2016

Keywords

Comments

Nonnegative values of m are listed in A047393.
Also, numbers h such that 32*h + 49 is a square.
Equivalently, numbers of the form i*(8*i + 7) with i = 0, -1, 1, -2, 2, -3, 3, ...
Infinitely many squares belong to this sequence.
The first bisection is A139278, and 0 followed by the second bisection gives A051870.
Generalized 18-gonal (or octadecagonal) numbers (see the third comment). - Omar E. Pol, Jun 06 2018
Partial sums of A317314. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(16*n-15))*(1 + x^(16*n-1))*(1 - x^(16*n)) = 1 + x + x^15 + x^18 + x^46 + .... - Peter Bala, Dec 10 2020
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. They are also the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, k >= 5. In this case k = 18. - Omar E. Pol, Apr 25 2021

Examples

			100 is in the sequence because 100 = 25*(25+7)/8 or also 100 = 4*(8*4-7).
From _Omar E. Pol_, Apr 24 2021: (Start)
Illustration of initial terms as vertices of a rectangular spiral:
        46_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18
         |                                                       |
         |                           0                           |
         |                           |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
         |                           1                           15
         |
        51
More generally, all generalized k-gonal numbers can be represented with this kind of spirals, k >= 5. In this case  k = 18. (End)
		

Crossrefs

Cf. sequences of the form m*(m+k)/(k+1) listed in A274978.
Cf. similar sequences listed in A299645.
Cf. A317314.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), this sequence (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [t: m in [0..200] | IsIntegral(t) where t is m*(m+7)/8];
    
  • Mathematica
    Select[m = Range[0, 200]; m (m + 7)/8, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
    Select[Table[(m(m+7))/8,{m,0,200}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,1,15,18,46},50] (* Harvey P. Dale, May 07 2019 *)
  • Python
    def A274979(n): return (n>>1)*((n<<2)+(3 if n&1 else -7)) # Chai Wah Wu, Mar 11 2025
  • Sage
    def A274979_list(len):
        h = lambda m: m*(m+7)/8
        return [h(m) for m in (0..len) if h(m) in ZZ]
    print(A274979_list(199)) # Peter Luschny, Jul 18 2016
    

Formula

O.g.f.: x^2*(1 + 14*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (3*(2*x + 1)*exp(-x) + (8*x^2 - 3)*exp(x))/4.
a(n) = (8*(n-1)*n - 3*(2*n-1)*(-1)^n - 3)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=2} 1/a(n) = (8 + 7*(sqrt(2)+1)*Pi)/49.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/7 + 2*sqrt(2)*log(sqrt(2)+1)/7 - 8/49. (End)
a(n) = (n-1)*(4*n+3)/2 if n is odd and a(n) = n*(4*n-7)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A051865 13-gonal (or tridecagonal) numbers: a(n) = n*(11*n - 9)/2.

Original entry on oeis.org

0, 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, 738, 871, 1015, 1170, 1336, 1513, 1701, 1900, 2110, 2331, 2563, 2806, 3060, 3325, 3601, 3888, 4186, 4495, 4815, 5146, 5488, 5841, 6205, 6580, 6966, 7363, 7771, 8190, 8620, 9061, 9513
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ... and the parallel line from 1, in the direction 1, 36, ..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313. - Omar E. Pol, Jul 18 2012

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Programs

Formula

a(n) = 11*n + a(n-1) - 10 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+10*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(11*a(n) + 56*n + 1) = a(11*a(n) + 56*n) + a(11*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 11/13. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*(x + 11*x^2/2). - Nikolaos Pantelidis, Feb 06 2023

A274978 Integers of the form m*(m + 6)/7.

Original entry on oeis.org

0, 1, 13, 16, 40, 45, 81, 88, 136, 145, 205, 216, 288, 301, 385, 400, 496, 513, 621, 640, 760, 781, 913, 936, 1080, 1105, 1261, 1288, 1456, 1485, 1665, 1696, 1888, 1921, 2125, 2160, 2376, 2413, 2641, 2680, 2920, 2961, 3213, 3256, 3520, 3565, 3841, 3888, 4176, 4225, 4525, 4576
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2016

Keywords

Comments

Nonnegative values of m are listed in A047274.
Also, numbers h such that 7*h + 9 is a square.
Equivalently, numbers of the form i*(7*i - 6) with i = 0, 1, -1, 2, -2, 3, -3, ...
Infinitely many squares belong to this sequence.
Generalized 16-gonal (or hexadecagonal) numbers. See the third comment. - Omar E. Pol, Jun 06 2018
Partial sums of A317312. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(14*n-13))*(1 + x^(14*n-1))*(1 - x^(14*n)) = 1 + x + x^13 + x^16+ x^40 + .... - Peter Bala, Dec 10 2020

Examples

			88 is in the sequence because 88 = 22*(22+6)/7 or also 88 = 4*(7*4-6).
		

Crossrefs

Supersequence of A051868.
Cf. A317312.
Cf. sequences of the form m*(m+k)/(k+1): A000290 (k=0), A000217 (k=1), A001082 (k=2), A074377 (k=3), A195162 (k=4), A144065 (k=5), A274978 (k=6), A274979 (k=7), A218864 (k=8).
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), this sequence (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [t: m in [0..200] | IsIntegral(t) where t is m*(m+6)/7];
  • Mathematica
    Select[m = Range[0, 200]; m (m + 6)/7, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
    Select[Table[(n(n+6))/7,{n,0,200}],IntegerQ] (* Harvey P. Dale, Sep 20 2022 *)
  • Sage
    def A274978_list(len):
        h = lambda m: m*(m+6)/7
        return [h(m) for m in (0..len) if h(m) in ZZ]
    print(A274978_list(179)) # Peter Luschny, Jul 18 2016
    

Formula

O.g.f.: x^2*(1 + 12*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (5*(2*x + 1)*exp(-x) + (14*x^2 - 5)*exp(x))/8.
a(n) = (14*(n-1)*n - 5*(2*n-1)*(-1)^n - 5)/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=2} 1/a(n) = (7 + 6*Pi*cot(Pi/7))/36. - Amiram Eldar, Feb 28 2022

A277082 Generalized 15-gonal (or pentadecagonal) numbers: n*(13*n - 11)/2, n = 0,+1,-1,+2,-2,+3,-3, ...

Original entry on oeis.org

0, 1, 12, 15, 37, 42, 75, 82, 126, 135, 190, 201, 267, 280, 357, 372, 460, 477, 576, 595, 705, 726, 847, 870, 1002, 1027, 1170, 1197, 1351, 1380, 1545, 1576, 1752, 1785, 1972, 2007, 2205, 2242, 2451, 2490, 2710, 2751, 2982, 3025, 3267, 3312, 3565, 3612, 3876, 3925, 4200, 4251, 4537, 4590, 4887, 4942
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

More generally, the ordinary generating function for the generalized k-gonal numbers is x*(1 + (k - 4)*x + x^2)/((1 - x)^3*(1 + x)^2). A general formula for the generalized k-gonal numbers is given by (k*(2*n^2 + 2*((-1)^n + 1)*n + (-1)^n - 1) - 2*(2*n^2 + 2*(3*(-1)^n + 1)*n + 3*((-1)^n - 1)))/16.
For k>4, Sum_{n>=1} 1/a(k,n) = 2*(k-2)/(k-4)^2 + 2*Pi*cot(2*Pi/(k-2))/(k-4). - Vaclav Kotesovec, Oct 05 2016
Numbers k for which 104*k + 121 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317311. - Omar E. Pol, Jul 28 2018

Crossrefs

Cf. A051867 (15-gonal numbers), A316672, A317311.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), this sequence (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,12,15,37];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 12, 15, 37}, 56]
    Table[(26 n^2 + 26 n + 9 (-1)^n (2 n + 1) - 9)/16, {n, 0, 55}]
  • PARI
    concat(0, Vec(x*(1+11*x+x^2)/((1-x)^3*(1+x)^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016
    

Formula

G.f.: x*(1 + 11*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (26*n^2 + 26*n + 9*(-1)^n*(2*n+1) - 9)/16.
Sum_{n>=1} 1/a(n) = 26/121 + 2*Pi*cot(2*Pi/13)/11 = 1.3032041594895857... . - Vaclav Kotesovec, Oct 05 2016

A303813 Generalized 19-gonal (or enneadecagonal) numbers: m*(17*m - 15)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 16, 19, 49, 54, 99, 106, 166, 175, 250, 261, 351, 364, 469, 484, 604, 621, 756, 775, 925, 946, 1111, 1134, 1314, 1339, 1534, 1561, 1771, 1800, 2025, 2056, 2296, 2329, 2584, 2619, 2889, 2926, 3211, 3250, 3550, 3591, 3906, 3949, 4279, 4324, 4669, 4716, 5076, 5125, 5500, 5551, 5941, 5994, 6399
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k for which 136*k + 225 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317315. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), this sequence (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,16,19,49];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    With[{nn = 54}, {0}~Join~Riffle[Array[PolygonalNumber[19, #] &, Ceiling[nn/2]], Array[PolygonalNumber[19, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    CoefficientList[ Series[-x (x^2 + 15x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 16, 19, 49}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jun 08 2018
    

Formula

From Colin Barker, Jun 08 2018: (Start)
G.f.: x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = (34*n^2 + 60*n)/16 for n even.
a(n) = (34*n^2 + 8*n - 26)/16 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)

A303815 Generalized 29-gonal (or icosienneagonal) numbers: m*(27*m - 25)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 26, 29, 79, 84, 159, 166, 266, 275, 400, 411, 561, 574, 749, 764, 964, 981, 1206, 1225, 1475, 1496, 1771, 1794, 2094, 2119, 2444, 2471, 2821, 2850, 3225, 3256, 3656, 3689, 4114, 4149, 4599, 4636, 5111, 5150, 5650, 5691, 6216, 6259, 6809, 6854, 7429, 7476, 8076
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k such that 216*k + 625 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317325.

Crossrefs

Cf. A255187, A277990 (see the third comment), A316672, A317325.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), this sequence (k=29), A316729 (k=30).

Programs

  • Mathematica
    Table[(54 n (n + 1) + 23 (2 n + 1) (-1)^n - 23)/16, {n, 0, 50}] (* Bruno Berselli, Jun 07 2018 *)
    CoefficientList[ Series[-x (x^2 + 25x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 26, 29, 79, 84}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
    With[{nn=25},Riffle[Table[1-(29x)/2+(27x^2)/2,{x,nn}],PolygonalNumber[ 29,Range[ nn]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 26 2020 *)
  • PARI
    concat(0, Vec(x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 07 2018: (Start)
G.f.: x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (54*n*(n + 1) + 23*(2*n + 1)*(-1)^n - 23)/16. Therefore:
a(n) = n*(27*n + 50)/8, if n is even, or (n + 1)*(27*n - 23)/8 otherwise.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(27*n^2 - 25) = 0. (End)
Sum_{n>=1} 1/a(n) = 2*(27 + 25*Pi*cot(2*Pi/27))/625. - Amiram Eldar, Mar 01 2022

A303298 Generalized 21-gonal (or icosihenagonal) numbers: m*(19*m - 17)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 18, 21, 55, 60, 111, 118, 186, 195, 280, 291, 393, 406, 525, 540, 676, 693, 846, 865, 1035, 1056, 1243, 1266, 1470, 1495, 1716, 1743, 1981, 2010, 2265, 2296, 2568, 2601, 2890, 2925, 3231, 3268, 3591, 3630, 3970, 4011, 4368, 4411, 4785, 4830, 5221, 5268, 5676, 5725, 6150, 6201, 6643, 6696, 7155, 7210
Offset: 0

Views

Author

Omar E. Pol, Jun 23 2018

Keywords

Comments

Numbers k for which 152*k + 289 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317317. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), this sequence (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,18,21,55];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Maple
    a:= n-> (m-> m*(19*m-17)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    CoefficientList[Series[-(x^2 + 17 x + 1) x/((x + 1)^2*(x - 1)^3), {x, 0, 55}], x] (* or *)
    Array[PolygonalNumber[21, (1 - 2 Boole[EvenQ@ #]) Ceiling[#/2]] &, 56, 0] (* Michael De Vlieger, Jul 10 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 18, 21, 55}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 17*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jun 24 2018
    

Formula

G.f.: -(x^2+17*x+1)*x/((x+1)^2*(x-1)^3). - Alois P. Heinz, Jun 23 2018
From Colin Barker, Jun 24 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (19*n^2 + 34*n) / 8 for n even.
a(n) = (19*n^2 + 4*n - 15) / 8 for n odd.
(End)
Sum_{n>=1} 1/a(n) = 38/289 + 2*Pi*cot(2*Pi/19)/17. - Amiram Eldar, Feb 28 2022

A303305 Generalized 17-gonal (or heptadecagonal) numbers: m*(15*m - 13)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 14, 17, 43, 48, 87, 94, 146, 155, 220, 231, 309, 322, 413, 428, 532, 549, 666, 685, 815, 836, 979, 1002, 1158, 1183, 1352, 1379, 1561, 1590, 1785, 1816, 2024, 2057, 2278, 2313, 2547, 2584, 2831, 2870, 3130, 3171, 3444, 3487, 3773, 3818, 4117, 4164, 4476, 4525, 4850
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

120*a(n) + 169 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317313. - Omar E. Pol, Jul 28 2018
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. They are also the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, k >= 5. In this case k = 17. - Omar E. Pol, Apr 25 2021

Examples

			From _Omar E. Pol_, Apr 24 2021: (Start)
Illustration of initial terms as vertices of a rectangular spiral:
        43_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _17
         |                                                   |
         |                         0                         |
         |                         |_ _ _ _ _ _ _ _ _ _ _ _ _|
         |                         1                         14
         |
        48
More generally, all generalized k-gonal numbers can be represented with this kind of spirals, k >= 5". (End)
		

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), this sequence (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    With[{pp = 17, nn = 55}, {0}~Join~Riffle[Array[PolygonalNumber[pp, #] &, Ceiling[nn/2]], Array[PolygonalNumber[pp, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    Table[(30 n (n + 1) + 11 (2 n + 1) (-1)^n - 11)/16, {n, 0, 60}] (* Bruno Berselli, Jun 08 2018 *)
    CoefficientList[ Series[-x (x^2 + 13x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 14, 17, 43}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 13*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 08 2018: (Start)
G.f.: x*(1 + 13*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (30*n*(n + 1) + 11*(2*n + 1)*(-1)^n - 11)/16. Therefore:
a(n) = n*(15*n + 26)/8, if n is even, or (n + 1)*(15*n - 11)/8 otherwise.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(15*n^2 - 13) = 0. (End)
Previous Showing 11-20 of 45 results. Next