cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 98 results. Next

A220482 Triangle read by rows: T(j,k) in which row j lists the parts in nondecreasing order of the j-th region of the set of partitions of n, with 1<=j<=A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 4, 3, 1, 1, 1, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 3, 2, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 27 2013

Keywords

Comments

For the definition of "region" of the set of partitions of n see A206437.

Examples

			First 15 rows of the irregular triangle are
1;
1, 2;
1, 1, 3;
2;
1, 1, 1, 2, 4;
3;
1, 1, 1, 1, 1, 2, 5;
2;
2, 4;
3;
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6;
3;
2, 5;
4;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7;
		

Crossrefs

Positive terms of A186114. Mirror of A206437.
Row j has length A194446(j). Row sums give A186412.

A228350 Triangle read by rows: T(j,k) is the k-th part in nonincreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 6, 5, 4, 4, 3, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120, n >= 1.
The equivalent sequence for integer partitions is A206437.

Examples

			---------------------------------------------------------
.              Diagram                Triangle
Compositions     of            of compositions (rows)
.   of 5       regions          and regions (columns)
----------------------------------------------------------
.             _ _ _ _ _
.         5  |_        |                                5
.       1+4  |_|_      |                              1 4
.       2+3  |_  |     |                            2   3
.     1+1+3  |_|_|_    |                          1 1   3
.       3+2  |_    |   |                        3       2
.     1+2+2  |_|_  |   |                      1 2       2
.     2+1+2  |_  | |   |                    2   1       2
.   1+1+1+2  |_|_|_|_  |                  1 1   1       2
.       4+1  |_      | |                4               1
.     1+3+1  |_|_    | |              1 3               1
.     2+2+1  |_  |   | |            2   2               1
.   1+1+2+1  |_|_|_  | |          1 1   2               1
.     3+1+1  |_    | | |        3       1               1
.   1+2+1+1  |_|_  | | |      1 2       1               1
.   2+1+1+1  |_  | | | |    2   1       1               1
. 1+1+1+1+1  |_|_|_|_|_|  1 1   1       1               1
.
Also the structure could be represented by an isosceles triangle in which the n-th diagonal gives the n-th region. For the composition of 4 see below:
.             _ _ _ _
.         4  |_      |                  4
.       1+3  |_|_    |                1   3
.       2+2  |_  |   |              2       2
.     1+1+2  |_|_|_  |            1   1       2
.       3+1  |_    | |          3               1
.     1+2+1  |_|_  | |        1   2               1
.     2+1+1  |_  | | |      2       1               1
.   1+1+1+1  |_|_|_|_|    1   1       1               1
.
Illustration of the four sections of the set of compositions of 4:
.                                      _ _ _ _
.                                     |_      |     4
.                                     |_|_    |   1+3
.                                     |_  |   |   2+2
.                       _ _ _         |_|_|_  | 1+1+2
.                      |_    |   3          | |     1
.             _ _      |_|_  | 1+2          | |     1
.     _      |_  | 2       | |   1          | |     1
.    |_| 1     |_| 1       |_|   1          |_|     1
.
.
Illustration of initial terms. The parts of the eight regions of the set of compositions of 4:
--------------------------------------------------------
\j:  1      2    3        4     5      6    7          8
k
--------------------------------------------------------
.  _    _ _    _    _ _ _     _    _ _    _    _ _ _ _
1 |_|1 |_  |2 |_|1 |_    |3  |_|1 |_  |2 |_|1 |_      |4
2        |_|1        |_  |2         |_|1        |_    |3
3                      | |1                       |   |2
4                      |_|1                       |_  |2
5                                                   | |1
6                                                   | |1
7                                                   | |1
8                                                   |_|1
.
Triangle begins:
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
4,3,2,2,1,1,1,1;
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
.
Also triangle read by rows T(n,m) in which row n lists the parts of the n-th section of the set of compositions of the integers >= n, ordered by regions. Row lengths give A045623. Row sums give A001792 (see below):
[1];
[2,1];
[1],[3,2,1,1];
[1],[2,1],[1],[4,3,2,2,1,1,1,1];
[1],[2,1],[1],[3,2,1,1],[1],[2,1],[1],[5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1];
		

Crossrefs

Formula

T(j,k) = A065120(A001511(j)),k) = A001511(j) - A029837(k), 1<=k<=A006519(j), j>=1.

A228371 First differences of A228370. Also A001511 and A006519 interleaved.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 4, 8, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 5, 16, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 4, 8, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 6, 32, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 4, 8, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 5, 16, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 4, 8, 1, 1, 2, 2, 1, 1, 3, 4, 1, 1, 2, 2, 1, 1, 7, 64
Offset: 1

Views

Author

Omar E. Pol, Aug 21 2013

Keywords

Comments

Number of toothpicks added at n-th stage to the toothpick structure (related to integer compositions) of A228370.
The equivalent sequence for integer partitions is A220517.

Examples

			Illustration of the structure after 32 stages. The diagram represents the 16 compositions of 5. The k-th horizontal line segment has length A001511(k) equals the largest part of the k-th region. The k-th vertical line segment has length A006519(k) equals the number of parts of the k-th region.
.      _ _ _ _ _
16     _        |
15     _|_      |
14     _  |     |
13     _|_|_    |
12     _    |   |
11     _|_  |   |
10     _  | |   |
9      _|_|_|_  |
8      _      | |
7      _|_    | |
6      _  |   | |
5      _|_|_  | |
4      _    | | |
3      _|_  | | |
2      _  | | | |
1       | | | | |
.
Written as an irregular triangle the sequence begins:
  1,1;
  2,2;
  1,1,3,4;
  1,1,2,2,1,1,4,8;
  1,1,2,2,1,1,3,4,1,1,2,2,1,1,5,16;
  1,1,2,2,1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,6,32;
  ...
		

Crossrefs

Row lengths give 2*A011782. Right border gives A000079.

Programs

  • Python
    def A228371(n): return ((m:=(n>>1)+1)&-m).bit_length() if n&1 else (m:=n>>1)&-m # Chai Wah Wu, Jul 14 2022

Formula

a(2n-1) = A001511(n), n >= 1. a(2n) = A006519(n), n >= 1.

A210980 Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 69, 123, 189, 304, 458, 693, 998, 1474, 2067, 2927, 4056, 5613, 7595, 10335, 13782, 18411, 24276, 31944, 41583, 54152, 69762, 89758, 114668, 146181, 185083, 234051, 294126, 368992, 460669, 573906, 711865, 881506, 1087023, 1338043
Offset: 0

Views

Author

Omar E. Pol, Apr 21 2012

Keywords

Comments

Each part is represented by a cuboid 1 X 1 X L where L is the size of the part.

Examples

			For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this:
.                                        |  Partitions
.    A194805(7) = 25    A066186(7) = 105 |  of 7
.                                        |
.                   1    * * * * * * 1   |  7
.                 2      * * * 1 * * 2   |  4+3
.               2        * * * * 1 * 2   |  5+2
.             3          * * 1 * 2 * 3   |  3+2+2
.   1       2            * * * * * 1 2   |  6+1
.     2     3            * * 1 * * 2 3   |  3+3+1
.       2   3            * * * 1 * 2 3   |  4+2+1
.         3 4            * 1 * 2 * 3 4   |  2+2+2+1
.           3   1        * * * * 1 2 3   |  5+1+1
.           4 2          * * 1 * 2 3 4   |  3+2+1+1
.       1   4            * * * 1 2 3 4   |  4+1+1+1
.         2 5            * 1 * 2 3 4 5   |  2+2+1+1+1
.           5 1          * * 1 2 3 4 5   |  3+1+1+1+1
.         1 6            * 1 2 3 4 5 6   |  2+1+1+1+1+1
.           7            1 2 3 4 5 6 7   |  1+1+1+1+1+1+1
.   ----------------------------------   |
.                                        |
.   * * * * 1 * * * *                    |
.   * * * 1 2 * * * *                    |
.   * 1 * * 2 1 * * *                    |
.   * * 1 2 2 * * 1 *                    |
.   * * * * 2 2 1 * *                    |
.   1 2 2 3 2 * * * *                    |
.           2 3 2 2 1                    |
.                                        |
.    A194804(7) = 59                     |
.
Note that, as a variant, in this case each part is labeled with its position in the partition.
The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189.
		

Crossrefs

Formula

a(n) = A066186(n) + A194804(n) + A194805(n), n >= 1.

A210991 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0

Views

Author

Omar E. Pol, Apr 30 2012

Keywords

Comments

It appears that if n is a partition number A000041 then the rotated structure with n regions shows each row as a partition of k such that A000041(k) = n (see example).
For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.     A182181(11) = 35           A210692(11) = 29
.
.   1                                       1
.   1                                       1
.   1                                       1
.   1                                       1
.   1       1                             1 1
.   1       1                             1 1
.   1       1   1                       1 1 1
.   2       1   1                       1 1 2
.   2       1   1   1                 1 1 1 2
.   3   2   2   2   1 1             1 1 2 2 3
.   6 3 4 2 5 3 4 2 3 2 1         1 2 3 4 5 6
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.
.                                A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
.                      6
.                    3   3
.                  4       2
.                2   2       2
.              5               1
.            3   2               1
.          4       1               1
.        2   2       1               1
.      3       1       1               1
.    2   1       1       1               1
.  1   1   1       1       1               1
.
		

Crossrefs

Formula

a(n) = A182181(n) + A182727(n) + A210692(n).
a(A000041(n)) = 2*A006128(n) + A026905(n).

A278355 a(n) = sum of the perimeters of the Ferrers boards of the partitions of n. Also, sum of the perimeters of the diagrams of the regions of the set of partitions of n.

Original entry on oeis.org

0, 4, 12, 24, 48, 80, 140, 216, 344, 512, 768, 1100, 1596, 2224, 3120, 4272, 5852, 7860, 10576, 13992, 18520, 24208, 31596, 40824, 52696, 67404, 86088, 109176, 138180, 173812, 218252, 272540, 339708, 421464, 521848, 643504, 792056, 971248, 1188804, 1450348, 1766184, 2144416, 2599164, 3141748, 3791248, 4563780
Offset: 0

Views

Author

Omar E. Pol, Nov 19 2016

Keywords

Comments

a(n) is also 4 times the total number of parts in all partitions of n.
Hence a(n) is also 4 times the sum of largest parts of all partitions of n.
Hence a(n) is also twice the total number of parts in all partitions of n plus twice the sum of largest parts of all partitions of n.
a(n) is also the sum of the perimeters of the first n polygons constructed with the Dyck path (and its mirror) that arises from the minimalist diagram of the regions of the set of partitions of n. The n-th odd-indexed segment of the diagram has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. The k-th polygon of the diagram is associated to the k-th section of the set of partitions of n, with 1<=k<=n. See the bottom of Example section. For the definition of "section" see A135010. For the definition of "region" see A206437.

Examples

			For n = 5 consider the partitions of 5 in colexicographic order (as shown in the 5th row of the triangle A211992) and its associated diagram of regions as shown below:
.                                Regions            Minimalist
.         Partitions of 5        diagram             version
.                               _ _ _ _ _
.         1, 1, 1, 1, 1        |_| | | | |          _| | | | |
.         2, 1, 1, 1           |_ _| | | |          _ _| | | |
.         3, 1, 1              |_ _ _| | |          _ _ _| | |
.         2, 2, 1              |_ _|   | |          _ _|   | |
.         4, 1                 |_ _ _ _| |          _ _ _ _| |
.         3, 2                 |_ _ _|   |          _ _|     |
.         5                    |_ _ _ _ _|          _ _ _ _ _|
.
Then consider the following table which contains the Ferrers boards of the partitions of 5 and the diagram of every region of the set of partitions of 5:
-------------------------------------------------------------------------
| Partitions  |             |       |   Regions   |             |       |
|     of 5    |   Ferrers   | Peri- |     of 5    |   Region    | Peri- |
|(See A211992)|    board    | meter |(see A220482)|   diagram   | meter |
-------------------------------------------------------------------------
|                  _                |                 _                 |
|      1          |_|               |       1        |_|            4   |
|      1          |_|               |                   _               |
|      1          |_|               |       1         _|_|              |
|      1          |_|               |       2        |_|_|          8   |
|      1          |_|          12   |                     _             |
|                  _ _              |       1            |_|            |
|      2          |_|_|             |       1         _ _|_|            |
|      1          |_|               |       3        |_|_|_|       12   |
|      1          |_|               |                 _ _               |
|      1          |_|          12   |       2        |_|_|          6   |
|                  _ _ _            |                       _           |
|      3          |_|_|_|           |       1              |_|          |
|      1          |_|               |       1              |_|          |
|      1          |_|          12   |       1             _|_|          |
|                  _ _              |       2         _ _|_|_|          |
|      2          |_|_|             |       4        |_|_|_|_|     18   |
|      2          |_|_|             |                 _ _ _             |
|      1          |_|          10   |       3        |_|_|_|        8   |
|                  _ _ _ _          |                         _         |
|      4          |_|_|_|_|         |       1                |_|        |
|      1          |_|          12   |       1                |_|        |
|                  _ _ _            |       1                |_|        |
|      3          |_|_|_|           |       1                |_|        |
|      2          |_|_|        10   |       1               _|_|        |
|                  _ _ _ _ _        |       2         _ _ _|_|_|        |
|      6          |_|_|_|_|_|  12   |       5        |_|_|_|_|_|   24   |
|                                   |                                   |
-------------------------------------------------------------------------
|   Sum of perimeters:         80         <-- equals -->           80   |
-------------------------------------------------------------------------
The sum of the perimeters of the Ferrers boards is 12 + 12 + 12 + 10 + 12 + 10 + 12 = 80, so a(5) = 80.
On the other hand, the sum of the perimeters of the diagrams of regions is 4 + 8 + 12 + 6 + 18 + 8 + 24 = 80, equaling the sum of the perimeters of the Ferrers boards.
.
Illustration of first six polygons of an infinite diagram constructed with the boundary segments of the minimalist diagram of regions and its mirror (note that the diagram looks like reflections on a mountain lake):
11............................................................
.                                                            /\
.                                                           /  \
.                                                          /    \
7...................................                      /      \
.                                  /\                    /        \
5.....................            /  \                /\/          \
.                    /\          /    \          /\  /              \
3...........        /  \        /      \        /  \/                \
2.......   /\      /    \    /\/        \      /                      \
1...  /\  /  \  /\/      \  /            \  /\/                        \
0  /\/  \/    \/          \/              \/                            \
.  \/\  /\    /\          /\              /\                            /
.     \/  \  /  \/\      /  \            /  \/\                        /
.          \/      \    /    \/\        /      \                      /
.                   \  /        \      /        \  /\                /
.                    \/          \    /          \/  \              /
.                                 \  /                \/\          /
.                                  \/                    \        /
.                                                         \      /
.                                                          \    /
.                                                           \  /
.                                                            \/
n:
. 0 1  2   3          4             5                         6
Perimeter of the n-th polygon:
. 0 4  8  12         24            32                        60
a(n) is the sum of the perimeters of the first n polygons:
. 0 4 12  24         48            80                       140
.
For n = 5, the sum of the perimeters of the first five polygons is 4 + 8 + 12 + 24 + 32 = 80, so a(5) = 80.
For n = 6, the sum of the perimeters of the first six polygons is 4 + 8 + 12 + 24 + 32 + 60 = 140, so a(6) = 140.
For another version of the above diagram see A228109.
		

Crossrefs

Formula

a(n) = 4*A006128(n) = 2*A211978(n).
a(n) = 2*A225600(2*A000041(n)) = 2*A225600(A139582(n)), n >= 1.
a(n) = 2*((Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m))) = 4*Sum_{m=1..p(n)} A194446(m) = 4*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.

A299474 a(n) = 4*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of edges in the diagram of partitions of n, in which A299475(n) is the number of vertices and A000041(n) is the number of regions (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     8      12        20          28            44     (edges)
A299475(n):   4     7      10        16          22            34     (vertices)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), A299473 (k=3), this sequence (k=4).

Programs

  • GAP
    List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
    
  • Maple
    with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
  • PARI
    a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
    
  • Python
    from sympy.ntheory import npartitions
    def a(n): return 4*npartitions(n)
    print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021

Formula

a(n) = 4*A000041(n) = 2*A139582(n).
a(n) = A000041(n) + A299475(n) - 1, n >= 1 (Euler's formula).
a(n) = A000041(n) + A299473(n). - Omar E. Pol, Aug 11 2018

A299475 a(n) is the number of vertices in the diagram of partitions of n (see example).

Original entry on oeis.org

1, 4, 7, 10, 16, 22, 34, 46, 67, 91, 127, 169, 232, 304, 406, 529, 694, 892, 1156, 1471, 1882, 2377, 3007, 3766, 4726, 5875, 7309, 9031, 11155, 13696, 16813, 20527, 25048, 30430, 36931, 44650, 53932, 64912, 78046, 93556, 112015, 133750, 159523, 189784, 225526, 267403, 316675, 374263, 441820, 520576, 612679
Offset: 0

Views

Author

Omar E. Pol, Feb 11 2018

Keywords

Comments

For n >= 1, A299474(n) is the number of edges and A000041(n) is the number of regions in the mentioned diagram (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     7      10        16          22            34     (vertices)
A299474(n):   4     8      12        20          28            44     (edges)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==0, 1, 1+3*numbpart(n)); \\ Michel Marcus, Jul 15 2018

Formula

a(0) = 1; a(n) = 1 + 3*A000041(n), n >= 1.
a(n) = A299474(n) - A000041(n) + 1, n >= 1 (Euler's formula).

A182727 Sum of largest parts of the shell model of partitions with n regions.

Original entry on oeis.org

1, 3, 6, 8, 12, 15, 20, 22, 26, 29, 35, 38, 43, 47, 54, 56, 60, 63, 69, 74, 78, 86, 89, 94, 98, 105, 108, 114, 119, 128, 130, 134, 137, 143, 148, 152, 160, 164, 171, 177, 182, 192, 195, 200, 204, 211, 214, 220, 225, 234, 239, 243, 251, 258, 264, 275, 277, 281
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2011

Keywords

Comments

Question: Is there some connection with fractals?

Examples

			For n = 6 the largest parts of the first six regions of the shell model of partitions are 1, 2, 3, 2, 4, 3, so a(6) = 1+2+3+2+4+3 = 15.
Written as a triangle begins:
1;
3;
6;
8,   12;
15,  20;
22,  26, 29, 35;
38,  43, 47, 54;
56,  60, 63, 69, 74, 78, 86;
89,  94, 98,105,108,114,119,128;
130,134,137,143,148,152,160,164,171,177,182,192;
195,200,204,211,214,220,225,234,239,243,251,258,264,275;
		

Crossrefs

Partial sums of A141285. Row j has length A187219(j). Right border gives A006128.

Formula

a(A000041(n)) = A182181(A000041(n)) = A006128(n). - Omar E. Pol, May 24 2012

Extensions

New name from Omar E. Pol, Apr 26 2012

A210941 Triangle read by rows in which row n lists the parts > 1 of the n-th zone of the shell model of partitions, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 2, 4, 3, 2, 5, 2, 2, 2, 4, 2, 3, 3, 6, 3, 2, 2, 5, 2, 4, 3, 7, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8, 3, 2, 2, 2, 5, 2, 2, 4, 3, 2, 7, 2, 3, 3, 3, 6, 3, 5, 4, 9, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 2, 5, 3, 2, 4, 4, 2, 8, 2
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2012

Keywords

Comments

The n-th zone of the shell model of partitions is formed by the parts of row n followed by infinitely many parts of size 1 (see example and also A210943).
Row n lists the largest part and the parts > 1 of the n-th zone of the model.

Examples

			Triangle                First 15 zones of the
begins                  shell model of partitions
--------------------------------------------------
1;                      1 1 1 1 1 1 1 1 1 1 1...
2;                      . 2 1 1 1 1 1 1 1 1 1...
3;                      . . 3 1 1 1 1 1 1 1 1...
2, 2;                   . 2 . 2 1 1 1 1 1 1 1...
4;                      . . . 4 1 1 1 1 1 1 1...
3, 2;                   . . 3 . 2 1 1 1 1 1 1...
5;                      . . . . 5 1 1 1 1 1 1...
2, 2, 2;                . 2 . 2 . 2 1 1 1 1 1...
4, 2;                   . . . 4 . 2 1 1 1 1 1...
3, 3;                   . . 3 . . 3 1 1 1 1 1...
6;                      . . . . . 6 1 1 1 1 1...
3, 2, 2;                . . 3 . 2 . 2 1 1 1 1...
5, 2;                   . . . . 5 . 2 1 1 1 1...
4, 3;                   . . . 4 . . 3 1 1 1 1...
7;                      . . . . . . 7 1 1 1 1...
		

Crossrefs

Column 1 is A141285. Row n has length A194548(n), n > 1.

Programs

  • PARI
    a210941(n)={
        my(p=[],r=[1]);
        if(n>1,
        my(c=2);
        while(#r1]));
            c++));
        return(r[1..n])
    } \\ Joe Slater, Sep 02 2024
Previous Showing 41-50 of 98 results. Next