cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A158780 a(2n) = A131577(n), a(2n+1) = A011782(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152, 4194304
Offset: 0

Views

Author

Paul Curtz, Mar 26 2009

Keywords

Comments

This construction combines the 2 basic sequences which equal their first differences in the same way as A138635 does for sequences which equal their 3rd differences and A137171 does for sequences which equal their fourth differences.
Essentially the same as A016116, A060546, and A131572. - R. J. Mathar, Apr 08 2009
Dropping a(0), this is the inverse binomial transform of A024537. - R. J. Mathar, Apr 08 2009

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [0,1] cat [2^Floor((n-2)/2): n in [2..50]]; // G. C. Greubel, Apr 19 2023
    
  • Mathematica
    Table[(2^Floor[n/2] +Boole[n==1] -Boole[n==0])/2, {n,0,50}] (* or *) LinearRecurrence[{0,2}, {0,1,1,1}, 51] (* G. C. Greubel, Apr 19 2023 *)
  • PARI
    a(n)=if(n>3,([0,1; 2,0]^n*[1;1])[1,1]/2,n>0) \\ Charles R Greathouse IV, Oct 18 2022
    
  • SageMath
    def A158780(n): return (2^(n//2) + int(n==1) - int(n==0))/2
    [A158780(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(2n) + a(2n+1) = A000079(n).
G.f.: x*(1+x-x^2)/(1-2*x^2). - R. J. Mathar, Apr 08 2009
a(n) = (1/2)*(2^floor(n/2) + [n=1] - [n=0]). - G. C. Greubel, Apr 19 2023
E.g.f.: (2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) + 2*x - 2)/4. - Stefano Spezia, May 13 2023

Extensions

Edited by R. J. Mathar, Apr 08 2009

A354789 a(2*n) = 9*2^n - 7, a(2*n+1) = 3*2^(n+2) - 7.

Original entry on oeis.org

2, 5, 11, 17, 29, 41, 65, 89, 137, 185, 281, 377, 569, 761, 1145, 1529, 2297, 3065, 4601, 6137, 9209, 12281, 18425, 24569, 36857, 49145, 73721, 98297, 147449, 196601, 294905, 393209, 589817, 786425, 1179641, 1572857, 2359289, 3145721, 4718585, 6291449, 9437177, 12582905, 18874361, 25165817, 37748729, 50331641, 75497465
Offset: 0

Views

Author

N. J. A. Sloane, Jul 14 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2},{2,5,11},100] (* Paolo Xausa, Oct 17 2023 *)
    CoefficientList[Series[(2+3x+2x^2)/((1-x)(1-2x^2)),{x,0,50}],x] (* Harvey P. Dale, Jun 07 2024 *)

Formula

G.f.: (2 + 3*x + 2*x^2)/((1 - x)*(1 - 2*x^2)). - Stefano Spezia, Feb 05 2023
E.g.f.: - 7*cosh(x) + 9*cosh(sqrt(2)*x) - 7*sinh(x) + 6*sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Jul 25 2024

A131572 a(0) = 0 and a(1) = 1, continued such that absolute values of 2nd differences equal the original sequence.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576
Offset: 0

Views

Author

Paul Curtz, Aug 28 2007

Keywords

Comments

This is the main sequence of a family of sequences starting at a(0) = A and a(1) = B, continuing a(3, ...) = 2B, 2B, 4B, 4B, 8B, 8B, 16B, 16B, 32B, 32B, ... such that the absolute values of the 2nd differences, abs(a(n+2) - 2*a(n+1) + a(n)), equal the original sequence. Alternatively starting at a(0) = a(1) = 1 gives A016116.

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [2^Floor(n/2)-0^n: n in [0..50]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    LinearRecurrence[{0,2},{0,1,2},50] (* Harvey P. Dale, Jul 10 2018 *)
  • SageMath
    [0]+[2^(n//2) for n in range(1,51)] # G. C. Greubel, Apr 22 2023

Formula

a(n) = 2*a(n-2), n>2.
O.g.f.: x*(1+2*x)/(1-2*x^2). - R. J. Mathar, Jul 16 2008
a(n) = A016116(n) - A000007(n), that is, a(0)=0, a(n) = A016116(n) for n>=1. - Bruno Berselli, Apr 13 2011
First differences: a(n+1) - a(n) = A131575(n).
Second differences: A131575(n+1) - A131575(n) = (-1)^n*a(n).
E.g.f.: -1 + cosh(sqrt(2)*x) + (1/sqrt(2))*sinh(sqrt(2)*x). - G. C. Greubel, Apr 22 2023

Extensions

Edited by R. J. Mathar, Jul 16 2008
More terms from Vincenzo Librandi, Aug 18 2011

A354788 a(2*k) = 3*2^k - 3, a(2*k+1) = 2^(k+2) - 3.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 21, 29, 45, 61, 93, 125, 189, 253, 381, 509, 765, 1021, 1533, 2045, 3069, 4093, 6141, 8189, 12285, 16381, 24573, 32765, 49149, 65533, 98301, 131069, 196605, 262141, 393213, 524285, 786429, 1048573, 1572861, 2097149, 3145725, 4194301, 6291453, 8388605, 12582909, 16777213, 25165821, 33554429, 50331645
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    f1:=proc(n) if (n mod 2) = 1 then 2^((n+3)/2)-3 else 3*2^(n/2)-3; fi; end;
    [seq(f1(n),n=0..45)];
  • Mathematica
    LinearRecurrence[{1,2,-2},{0,1,3},100] (* Paolo Xausa, Oct 17 2023 *)

Formula

a(n) = A136252(n-1). - R. J. Mathar, Jul 14 2022
G.f.: x*(1 + 2*x)/((x - 1)*(2*x^2 - 1)). - R. J. Mathar, Jul 14 2022
E.g.f.: 3*(cosh(sqrt(2)*x) - cosh(x)) - 3*sinh(x) + 2*sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Feb 04 2023

A347789 a(n) is the number of times that only 2 pegs have disks on them during the optimal solution to a Towers of Hanoi problem with n disks.

Original entry on oeis.org

0, 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, 508, 764, 1020, 1532, 2044, 3068, 4092, 6140, 8188, 12284, 16380, 24572, 32764, 49148, 65532, 98300, 131068, 196604, 262140, 393212, 524284, 786428, 1048572, 1572860, 2097148, 3145724, 4194300, 6291452
Offset: 1

Views

Author

John Bonomo, Sep 13 2021

Keywords

Comments

Zero together with the partial sum of the even terms of A016116. - Omar E. Pol, Sep 14 2021
For n >= 2, a(n+1) is the number of n X n arrays of 0's and 1's with every 2 X 2 square having density exactly 1. - David desJardins, Oct 27 2022

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, 2*n-2, 2*(a(n-2)+2))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Sep 14 2021
  • Mathematica
    LinearRecurrence[{1, 2, -2}, {0, 2, 4}, 42] (* Jean-François Alcover, May 14 2022 *)
  • PARI
    a(n) = (3+(n % 2))*(2^(n\2)) - 4; \\ Michel Marcus, Sep 14 2021
    
  • Python
    def a(n): return (3 + n%2) * 2**(n//2) - 4
    print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Sep 14 2021

Formula

a(n) = (3+(n mod 2))*(2^floor(n/2)) - 4.
a(n) = 4 * A052955(n-3) for n >= 3. - Joerg Arndt, Sep 14 2021
a(n) = A027383(n) - 2. - Omar E. Pol, Sep 14 2021
a(n) = 2 * A027383(n-2) for n >= 2. - Alois P. Heinz, Sep 14 2021
From Stefano Spezia, Sep 14 2021: (Start)
G.f.: 2*x^2*(1+x)/((1-x)*(1-2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) for n > 3. (End)

A209721 1/4 the number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.

Original entry on oeis.org

3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153, 65537, 98305, 131073, 196609, 262145, 393217, 524289, 786433, 1048577, 1572865, 2097153, 3145729
Offset: 1

Views

Author

R. H. Hardin, Mar 12 2012

Keywords

Comments

Column 2 of A209727.
From Richard Locke Peterson, Apr 26 2020: (Start)
The formula a(n) = 2*a(n-2)-1 also fits empirically. With the given initial numbers a(1)=3, a(2)=4, a(3)=5, this new formula implies the old empirical formula. (But it is not established that the old empirical formula is true, so it is not established that the new formula is true either.) Furthermore, if the initial numbers had somehow, for example, been 3,4,6 instead, the new formula no longer implies the old formula.
If the new formula actually is true, it follows that a(n) is the number of distinct integer triangles that can be formed with sides of length a(n-1) and a(n-2), since the greatest length the third side can have is a(n-1)+a(n-2)-1, and the least length would be a(n-1)-a(n-2)+1. (End)
Conjectures: a(n) = A029744(n+1)+1. Also, a(n) = positions of the zeros in A309019(n+2) - A002487(n+2). - George Beck, Mar 26 2022

Examples

			Some solutions for n=4
..2..1..2....1..2..1....0..2..1....2..0..1....1..2..0....2..1..2....0..1..0
..0..2..0....2..0..2....1..0..2....1..2..0....2..0..1....0..2..0....2..0..2
..1..0..1....0..1..0....0..2..1....2..0..1....1..2..0....1..0..1....1..2..1
..0..2..0....2..0..2....1..0..2....1..2..0....2..0..1....0..2..0....2..0..2
..1..0..1....0..1..0....0..2..1....2..0..1....1..2..0....2..1..2....1..2..1
		

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Empirical g.f.: x*(3+x-5*x^2)/((1-x)*(1-2*x^2)). [Colin Barker, Mar 23 2012]

A209722 1/4 the number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.

Original entry on oeis.org

4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 258, 386, 514, 770, 1026, 1538, 2050, 3074, 4098, 6146, 8194, 12290, 16386, 24578, 32770, 49154, 65538, 98306, 131074, 196610, 262146, 393218, 524290, 786434, 1048578, 1572866, 2097154, 3145730
Offset: 1

Views

Author

R. H. Hardin, Mar 12 2012

Keywords

Comments

Column 3 of A209727.

Examples

			Some solutions for n=4:
..2..1..2..1....2..1..2..1....1..2..1..2....1..0..2..0....2..1..2..1
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....1..0..1..0....0..1..0..1....1..0..2..0....1..0..1..0
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....2..1..2..1....0..1..0..1....1..0..2..0....1..0..1..0
		

Crossrefs

Cf. A209727.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3).
Conjectures from Colin Barker, Jul 12 2018: (Start)
G.f.: x*(4 + x - 7*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2 - 1) + 2 for n even.
a(n) = 2^((n + 1)/2) + 2 for n odd.
(End)

A320770 a(n) = (-1)^floor(n/4) * 2^floor(n/2).

Original entry on oeis.org

1, 1, 2, 2, -4, -4, -8, -8, 16, 16, 32, 32, -64, -64, -128, -128, 256, 256, 512, 512, -1024, -1024, -2048, -2048, 4096, 4096, 8192, 8192, -16384, -16384, -32768, -32768, 65536, 65536, 131072, 131072, -262144, -262144, -524288, -524288, 1048576, 1048576
Offset: 0

Views

Author

Michael Somos, Oct 20 2018

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 - 4*x^4 - 4*x^5 - 8*x^6 - 8*x^7 + ...
		

Crossrefs

Cf. A016116.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [(-1)^Floor(n/4)* 2^Floor(n/2): n in [0..50]]; // G. C. Greubel, Oct 27 2018
    
  • Mathematica
    a[ n_] := (-1)^Quotient[n, 4] * 2^Quotient[n, 2];
  • PARI
    {a(n) = (-1)^floor(n/4) * 2^floor(n/2)};
    
  • Python
    def A320770(n): return -(1<<(n>>1)) if n&4 else 1<<(n>>1) # Chai Wah Wu, Jan 18 2023

Formula

G.f.: (1 + x) * (1 + 2*x^2) / (1 + 4*x^4).
G.f.: A(x) = 1/(1 - x/(1 - x/(1 + 2*x/(1 - 4*x/(1 + 3*x/(1 + 5*x/(3 - 2*x))))))).
a(n) = (-1)^floor(n/2) * 2 * a(n-2) = -4 * a(n-4) for all n in Z.
a(n) = c(n) * (-2)^n * a(-n) for all n in Z where c(4*k+2) = -1 else 1.
a(n) = a(n+1) = (1+I)^n * (-I)^(n/2) * (-1)^floor(n/4) if n = 2*k.
a(n) = (-1)^floor(n/4) * A016116(n).
E.g.f.: cosh(x)*(cos(x) + sin(x)) + sin(x)*sinh(x). - Stefano Spezia, Feb 04 2023

A343177 a(0)=4; if n > 0 is even then a(n) = 2^(n/2+1)+3, otherwise a(n) = 3*(2^((n-1)/2)+1).

Original entry on oeis.org

4, 6, 7, 9, 11, 15, 19, 27, 35, 51, 67, 99, 131, 195, 259, 387, 515, 771, 1027, 1539, 2051, 3075, 4099, 6147, 8195, 12291, 16387, 24579, 32771, 49155, 65539, 98307, 131075, 196611, 262147, 393219, 524291, 786435, 1048579, 1572867, 2097155, 3145731, 4194307, 6291459
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2021

Keywords

Comments

Number of edges along the boundary of the graph G(n) described in A342759.

Crossrefs

Cf. A342759.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    f:=n->if n = 0 then 4 elif (n mod 2) = 0 then 2^(n/2+1)+3 else 3*(2^((n-1)/2)+1); fi;
    [seq(f(n),n=0..40)];
  • Mathematica
    LinearRecurrence[{1, 2, -2}, {4, 6, 7, 9}, 50] (* or *)
    A343177[n_] := Which[n == 0, 4, OddQ[n], 3*(2^((n-1)/2)+1), True, 2^(n/2+1)+3];
    Array[A343177, 50, 0] (* Paolo Xausa, Feb 02 2024 *)

Formula

G.f.: (4 + 2*x - 7*x^2 - 2*x^3)/((1 - x)*(1 - 2*x^2)). - Stefano Spezia, Feb 04 2023
E.g.f.: 3*cosh(x) + 2*cosh(sqrt(2)*x) + 3*sinh(x) + 3*sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, Jul 25 2024

A354785 Numbers of the form 3*2^k or 9*2^k.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384, 576, 768, 1152, 1536, 2304, 3072, 4608, 6144, 9216, 12288, 18432, 24576, 36864, 49152, 73728, 98304, 147456, 196608, 294912, 393216, 589824, 786432, 1179648, 1572864, 2359296, 3145728, 4718592, 6291456, 9437184, 12582912, 18874368, 25165824, 37748736, 50331648
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    seq[max_] := Union[Table[3*2^n, {n, 0, Floor[Log2[max/3]]}], Table[9*2^n, {n, 0, Floor[Log2[max/9]]}]]; seq[10^8] (* Amiram Eldar, Jan 16 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 8/9. - Amiram Eldar, Jan 16 2024
G.f.: (3*x^2+6*x+3)/(1-2*x^2). - Georg Fischer, Apr 10 2025
Previous Showing 11-20 of 20 results.