cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367218.

Examples

			The a(3) = 1 through a(10) = 7 strict partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                (4,1)  (5,1)    (6,1)    (7,1)    (8,1)    (9,1)
                       (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                         (5,2,1)  (5,3,1)  (5,4,1)
                                                  (6,2,1)  (6,3,1)
                                                           (7,2,1)
                                                           (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A367222 Number of subsets of {1..n} whose cardinality can be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

1, 2, 3, 6, 12, 24, 49, 101, 207, 422, 859, 1747, 3548, 7194, 14565, 29452, 59496, 120086, 242185, 488035, 982672, 1977166, 3975508, 7989147, 16047464, 32221270, 64674453, 129775774, 260337978, 522124197, 1046911594, 2098709858, 4206361369, 8429033614, 16887728757, 33829251009, 67755866536, 135687781793, 271693909435
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			The set {1,2,4} has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(4).
The a(0) = 1 through a(4) = 12 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {1,3}    {1,3}
                  {2,3}    {1,4}
                  {1,2,3}  {2,3}
                           {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A326020 counts complete subsets.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts subsets containing two distinct elements summing to k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#], Union[#]]!={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367222(n):
        c, mlist = 1, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        c += 1
                        break
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367223(n).

Extensions

a(13)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367227 Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 63, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 119, 121, 127, 131, 133, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367219.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        43: {14}        85: {3,7}
     5: {3}        47: {15}        89: {24}
     7: {4}        49: {4,4}       91: {4,6}
    11: {5}        53: {16}        95: {3,8}
    13: {6}        55: {3,5}       97: {25}
    17: {7}        59: {17}        99: {2,2,5}
    19: {8}        61: {18}       101: {26}
    23: {9}        63: {2,2,4}    103: {27}
    25: {3,3}      65: {3,6}      107: {28}
    27: {2,2,2}    67: {19}       109: {29}
    29: {10}       71: {20}       113: {30}
    31: {11}       73: {21}       115: {3,9}
    35: {3,4}      77: {4,5}      117: {2,2,6}
    37: {12}       79: {22}       119: {4,7}
    41: {13}       83: {23}       121: {5,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124506 appears to count combination-free subsets, differences of A326083.
A229816 counts partitions whose length is not a part, ranks A367107.
A304792 counts subset-sums of partitions, strict A365925.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364463 Number of subsets of {1..n} with elements disjoint from first differences of elements.

Original entry on oeis.org

1, 2, 3, 6, 10, 18, 30, 54, 92, 167, 290, 525, 935, 1704, 3082, 5664, 10386, 19249, 35701, 66702, 124855, 234969, 443174, 839254, 1592925, 3032757, 5786153, 11066413, 21204855, 40712426, 78294085, 150815154, 290922900, 561968268, 1086879052, 2104570243
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

In other words, no element is the difference of two consecutive elements.
From David A. Corneth, Aug 02 2023: (Start)
As subsets counted in a(n) are also counted in a(n+1) and {n+1} is a subset counted in a(n+1) but not a(n), a(n + 1) > a(n) for n >= 1.
As every subset counted in a(n + 1) that contains n+1 can be found from some subset counted in a(n) by appending n+1 and every subset counted in a(n) not containing n + 1 is counted in a(n + 1), a(n+1) <= 2*a(n). (End)

Examples

			The a(0) = 1 through a(5) = 18 subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {2,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,5}
                                {2,3,4}
                                {3,4,5}
                                {2,3,4,5}
		

Crossrefs

For all differences of pairs of elements we have A007865.
For partitions instead of subsets we have A363260, strict A364464.
The complement is counted by A364466.
A000041 counts integer partitions, strict A000009.
A364465 counts subsets with distinct first differences, partitions A325325.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]=={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364463(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) < a(n + 1) <= 2 * a(n). - David A. Corneth, Aug 02 2023

Extensions

a(21)-a(29) from David A. Corneth, Aug 02 2023
a(30)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A364464 Number of strict integer partitions of n where no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 6, 5, 8, 9, 12, 13, 16, 16, 21, 23, 29, 34, 38, 41, 49, 57, 64, 73, 86, 95, 110, 120, 135, 160, 171, 197, 219, 247, 277, 312, 342, 386, 431, 476, 527, 598, 640, 727, 796, 893, 966, 1097, 1178, 1327, 1435, 1602, 1740, 1945, 2084, 2337
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2023

Keywords

Comments

In other words, the parts are disjoint from the first differences.

Examples

			The strict partition y = (9,5,3,1) has differences (4,2,2), and these are disjoint from the parts, so y is counted under a(18).
The a(1) = 1 through a(9) = 6 strict partitions:
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)
                 (3,1)  (3,2)  (5,1)  (4,3)  (5,3)  (5,4)
                        (4,1)         (5,2)  (6,2)  (7,2)
                                      (6,1)  (7,1)  (8,1)
                                                    (4,3,2)
                                                    (5,3,1)
		

Crossrefs

For length instead of differences we have A240861, non-strict A229816.
For all differences of pairs of elements we have A364346, for subsets A007865.
For subsets instead of strict partitions we have A364463, complement A364466.
The non-strict version is A363260.
The complement is counted by A364536, non-strict A364467.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A120641 counts strict double-free partitions, non-strict A323092.
A320347 counts strict partitions w/ distinct differences, non-strict A325325.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]=={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364464(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364467 Number of integer partitions of n where some part is the difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the parts are not disjoint from their own first differences.

Examples

			The a(3) = 1 through a(9) = 13 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (621)
                       (2211)   (3211)    (521)      (3321)
                       (21111)  (22111)   (3221)     (4221)
                                (211111)  (4211)     (4311)
                                          (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For all differences of pairs parts we have A363225, complement A364345.
The complement is counted by A363260.
For subsets of {1..n} we have A364466, complement A364463.
The strict case is A364536, complement A364464.
These partitions have ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364536 Number of strict integer partitions of n where some part is a difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 5, 4, 6, 6, 9, 11, 16, 17, 23, 25, 30, 38, 48, 55, 65, 78, 92, 106, 127, 146, 176, 205, 230, 277, 315, 366, 421, 483, 552, 640, 727, 829, 950, 1083, 1218, 1408, 1577, 1794, 2017, 2298, 2561, 2919, 3255, 3685, 4116, 4638, 5163
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, strict partitions with parts not disjoint from first differences.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12):
  21  .  .  42   421  431  63   532   542   84    742   743   A5
            321       521  621  541   632   642   841   752   843
                                631   821   651   A21   761   942
                                721   5321  921   5431  842   C21
                                4321        5421  6421  B21   6432
                                            6321  7321  6431  6531
                                                        6521  7431
                                                        7421  7521
                                                        8321  8421
                                                              9321
                                                              54321
		

Crossrefs

For all differences of pairs we have A363226, non-strict A363225.
For all non-differences of pairs we have A364346, strict A364345.
The strict complement is counted by A364464, non-strict A363260.
For subsets of {1..n} we have A364466, complement A364463.
The non-strict case is A364467, ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, strict A120641.
A325325 counts partitions with distinct first-differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Comments

In other words, partitions whose parts are not disjoint from their first differences.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
  78: {1,2,6}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

For all differences of pairs the complement is A364347, counted by A364345.
For all differences of pairs we have A364348, counted by A363225.
Subsets of {1..n} of this type are counted by A364466, complement A364463.
These partitions are counted by A364467, complement A363260.
The strict case is A364536, complement A364464.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]
Previous Showing 11-20 of 32 results. Next