cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A367212 Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2023

Keywords

Comments

Or, partitions whose length is a subset-sum of the parts.

Examples

			The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)       (62)
             (111)  (211)   (221)    (321)     (322)      (332)
                    (1111)  (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6).
The a(2) = 1 through a(6) = 15 subsets:
  {2}  {2}  {2}    {2}      {2}
       {3}  {3}    {3}      {3}
            {4}    {4}      {4}
            {3,4}  {5}      {5}
                   {3,4}    {6}
                   {3,5}    {3,4}
                   {4,5}    {3,5}
                   {2,4,5}  {3,6}
                            {4,5}
                            {4,6}
                            {5,6}
                            {2,4,5}
                            {2,4,6}
                            {2,5,6}
                            {4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
A366320 counts subsets without a subset summing to k, with A365381.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367223(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367222(n).

Extensions

a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 8 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    32     33      43       44        54         55
              1111  11111  222     52       53        72         64
                           111111  322      332       333        73
                                   1111111  2222      522        433
                                            11111111  3222       3322
                                                      111111111  22222
                                                                 1111111111
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12).
The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
		

Crossrefs

For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The strict case is A364350.
The complement is A365068, strict A364839.
The positive case is A365072, strict A365006.
A000041 counts integer partitions, strict A000009.
A007865 counts binary sum-free sets w/ re-usable parts, complement A093971.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364915(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            s = set(p)
            if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 23 2023

Formula

a(n) = A000041(n) - A365068(n).

Extensions

a(37)-a(59) from Chai Wah Wu, Sep 25 2023

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364461 Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Also Heinz numbers of a type of sum-free partitions not allowing re-used parts, counted by A236912.

Examples

			The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
		

Crossrefs

Subsets of this type are counted by A085489, with re-usable parts A007865.
Subsets not of this type are counted by A093971, w/ re-usable parts A088809.
Partitions of this type are counted by A236912.
Allowing parts to be re-used gives A364347, counted by A364345.
The complement allowing parts to be re-used is A364348, counted by A363225.
The non-binary version allowing re-used parts is counted by A364350.
The complement is A364462, counted by A237113.
The non-binary version is A364531, counted by A237667, complement A364532.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]

A364462 Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

Also Heinz numbers of a type of sum-full partitions not allowing re-used parts, counted by A237113.
No partitions of this type are knapsack (A299702, A299729).
All multiples of terms are terms. - Robert Israel, Aug 30 2023

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   72: {1,1,1,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
		

Crossrefs

Subsets not of this type are counted by A085489, w/ re-usable parts A007865.
Subsets of this type are counted by A088809, with re-usable parts A093971.
Partitions not of this type are counted by A236912.
Partitions of this type are counted by A237113.
Subset of A299729.
The complement with re-usable parts is A364347, counted by A364345.
With re-usable parts we have A364348, counted by A363225 (strict A363226).
The complement is A364461.
The non-binary complement is A364531, counted by A237667.
The non-binary version is A364532, see also A364350.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Maple
    filter:= proc(n) local F, i,j,m;
      F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
      for i from 1 to nops(F)-1 do for j from 1 to i-1 do
        if member(F[i]+F[j],F) then return true fi
      od od;
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  1  3  1  2
  1  4  2  3  2
  1  5  2  5  3  3
  1  6  3  8  4  4  4
  1  7  3 11  6  6  6  5
  1  8  4 14  9  8 10  7  6
  1  9  4 19 11 11 14 11  9  8
  1 10  5 23 14 15 21 15 14 11 10
  1 11  5 28 17 19 28 22 20 17 15 12
  1 12  6 34 21 22 40 28 28 24 24 17 15
  1 13  6 40 25 27 50 38 37 34 35 27 22 18
  1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
  1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
    .    1           2     3         4       5
         1+1         2+2   1+2       1+3     1+4
         1+1+1             1+1+2     1+1+3   2+3
         1+1+1+1           1+1+1+2
         1+1+1+1+1         1+2+2
Row n = 5 counts the following positive linear combinations:
  .  1*1  1*2  1*3      1*4      1*5
     2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
     3*1       1*2+2*1  1*3+2*1  1*4+1*1
     4*1       1*2+3*1
     5*1       2*2+1*1
		

Crossrefs

Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024

A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Or numbers with a prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A363225.

Examples

			We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
		

Crossrefs

Subsets of this type are counted by A093971, complement A007865.
Partitions of this type are counted by A363225, strict A363226.
The complement is A364347, counted by A364345.
The complement without re-using parts is A364461, counted by A236912.
Without re-using parts we have A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]
Previous Showing 21-30 of 56 results. Next