cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A002690 a(n) = (n+1) * (2*n)! / n!.

Original entry on oeis.org

1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
Offset: 0

Views

Author

Keywords

Comments

Coefficients of orthogonal polynomials.
E.g.f. for series with alternating signs: x/(1+4*x)^(1/2).
Central terms of triangle A245334. - Reinhard Zumkeller, Aug 30 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = (n+1) * A001813(n) = 2^n * A001193(n+1).
Cf. A245334.

Programs

  • Haskell
    a002690 n = a245334 (2 * n) n  -- Reinhard Zumkeller, Aug 30 2014
  • Magma
    [(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
    
  • Maple
    with(combstruct):bin := {B=Union(Z,Prod(B,B))}:
    seq (count([B,bin,labeled],size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007
    A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3):
    seq(simplify(A002690(n)), n = 0..18);  # Peter Luschny, Jan 22 2025
  • Mathematica
    Table[((n+1)(2n)!)/n!,{n,0,20}] (* Harvey P. Dale, Sep 04 2011 *)
  • PARI
    a(n)=(n+1)*(2*n)!/n!
    

Formula

E.g.f.: (1-2*x)/(1-4*x)^(3/2).
a(n) = 2^n*n!*JacobiP(n, -1/2, -n+1, 3). - Peter Luschny, Jan 22 2025

Extensions

Edited by Ralf Stephan, Mar 21 2004

A056001 a(n) = (n+1)*binomial(n+7, 7).

Original entry on oeis.org

1, 16, 108, 480, 1650, 4752, 12012, 27456, 57915, 114400, 213928, 381888, 655044, 1085280, 1744200, 2728704, 4167669, 6229872, 9133300, 13156000, 18648630, 26048880, 35897940, 48859200, 65739375, 87512256, 115345296, 150629248, 195011080, 250430400, 319159632
Offset: 0

Views

Author

Barry E. Williams, Jun 18 2000

Keywords

Comments

Original name: A second-order recursive sequence.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A052226.
Cf. A093565 ((8, 1) Pascal, column m=8).

Programs

Formula

G.f.: (1+7*x)/(1-x)^9.
a(n) = A245334(n+7,7)/A000142(7). - Reinhard Zumkeller, Aug 31 2014
a(n) = A000581(n+8)+7*A000581(n+7). - R. J. Mathar, Oct 24 2014
E.g.f.: (5040 +75600*x +194040*x^2 +170520*x^3 +66150*x^4 +12642*x^5 + 1225*x^6 +57*x^7 +x^8)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 7*Pi^2/6 - 37583/3600.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2/12 - 2912*log(2)/15 + 155701/1200. (End)

A056114 Expansion of (1+9*x)/(1-x)^11.

Original entry on oeis.org

1, 20, 165, 880, 3575, 12012, 35035, 91520, 218790, 486200, 1016158, 2015520, 3821090, 6963880, 12257850, 20920064, 34730575, 56241900, 89049675, 138138000, 210315105, 314757300, 463681725, 673171200, 964177500, 1363732656, 1906401420, 2636011840, 3607704980
Offset: 0

Views

Author

Barry E. Williams, Jun 12 2000

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n+1)*Binomial(n+9, 9)); # G. C. Greubel, Jan 18 2020
  • Haskell
    a056114 n = (n + 1) * a007318' (n + 9) 9
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [(n+1)*Binomial(n+9, 9): n in [0..40]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    a:=n->(sum((numbcomp(n,10)), j=10..n)):seq(a(n), n=10..34); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[Series[(1+9x)/(1-x)^11,{x,0,40}],x] (* or *) LinearRecurrence[ {11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,20,165,880,3575,12012,35035, 91520,218790,486200,1016158},40] (* Harvey P. Dale, Jun 05 2018 *)
  • PARI
    vector(41, n, n*binomial(n+8, 9) ) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [(n+1)*binomial(n+9, 9) for n in (0..40)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = (n+1)*binomial(n+9, 9).
G.f.: (1+9*x)/(1-x)^11.
a(n) = A245334(n+9,9)/A000142(9). - Reinhard Zumkeller, Aug 31 2014
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 10*binomial(n+10,10) - 9*binomial(n+9,9).
E.g.f.: (9! +6894720*x +22861440*x^2 +26853120*x^3 +14605920*x^4 + 4191264*x^5 +677376*x^6 +63072*x^7 +3321*x^8 +91*x^9 +x^10)*exp(x)/9!. (End)
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 3*Pi^2/2 - 1077749/78400.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/4 - 24576*log(2)/35 + 37652469/78400. (End)

A192849 Molecular topological indices of the triangular graphs.

Original entry on oeis.org

0, 0, 24, 240, 1080, 3360, 8400, 18144, 35280, 63360, 106920, 171600, 264264, 393120, 567840, 799680, 1101600, 1488384, 1976760, 2585520, 3335640, 4250400, 5355504, 6679200, 8252400, 10108800, 12285000, 14820624, 17758440, 21144480
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Triangular graphs are defined for n>=2; extended to n=1 using closed form.

Crossrefs

Programs

  • GAP
    List([1..40], n -> n*(n^2 -1)*(n-2)^2); # G. C. Greubel, Jan 05 2019
  • Haskell
    a192849 n = if n < 3 then 0 else a245334 (n + 1) 4
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [n*(n^2 -1)*(n-2)^2: n in [1..40]]; // G. C. Greubel, Jan 05 2019
    
  • Maple
    [n*(n^2-1)*(n-2)^2$n=1..40]; # Muniru A Asiru, Jan 05 2019
  • Mathematica
    Table[n*(n^2-1)*(n-2)^2, {n,1,40}] (* G. C. Greubel, Jan 05 2019 *)
  • PARI
    vector(40, n, n*(n^2 -1)*(n-2)^2) \\ G. C. Greubel, Jan 05 2019
    
  • Sage
    [n*(n^2 -1)*(n-2)^2 for n in (1..40)] # G. C. Greubel, Jan 05 2019
    

Formula

a(n) = n*(n^2 - 1)*(n-2)^2.
a(n) = 24*A027800(n-3).
G.f.: 24*x^3*(4*x+1)/(x-1)^6. - Colin Barker, Aug 07 2012
a(n) = A245334(n+1,4), n > 2. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^3*(4 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/36 - 49/216.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/72 - 10*log(2)/9 + 145/216. (End)
Previous Showing 21-24 of 24 results.